Further Insights into SCCs

Ru Wang

Department of Computer Science and Engineering
Chinese University of Hong Kong
Given a directed graph $G = (V, E)$, the goal of the strongly connected components problem is to divide V into disjoint subsets, each being an SCC.

Example:

We should output: $\{a, b, c\}$, $\{d, e, f, g, k, l\}$, $\{h, i\}$, and $\{j\}$.
Algorithm

Step 1: Run DFS on G and list the vertices by the order they turn black.

- If a vertex is the i-th vertex turning black, define its label as i.

Step 2: Obtain the reverse graph G^{rev} by flipping all the edge directions in G.

Step 3: Perform DFS on G^{rev} subject to the following rules:

- Rule 1: Start at the vertex with the largest label.
- Rule 2: When a restart is needed, do so from the white vertex with the largest label.

Output the vertices in each DFS-tree as an SCC.

Further Insights into SCCs
Next, we will show how to implement the SCC algorithm in $O(|V| + |E|)$ time. You can assume that $V = \{1, 2, \ldots, n\}$.

Example:

![Graph G with nodes 1 to 12 and edges connecting them]
Step 1

Perform DFS on G and record the turn-black order in an array A.

- $A[i]$ stores the vertex with label i.

Time: $O(|V| + |E|)$.

Further Insights into SCCs
Step 2

Obtain $G^{\text{rev}} = (V, E^{\text{rev}})$ from G in $O(|V| + |E|)$ time.

We will illustrate how to do so through an example.
Step 2

Initialize the head-pointer array for G^{rev}.

adj. list of G
adj. list of G^{rev}
Step 2

Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev}.
Step 2

Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev}.

adj. list of G

adj. list of G^{rev}
Step 2

Scan the neighbor list of each $u \in V$ in G.
For every out-neighbor v of u, add u to the neighbor list of v in G^{rev}.

adj. list of G

adj. list of G^{rev}
Step 2

Scan the neighbor list of each $u \in V$ in G.
For every out-neighbor v of u, add u to the neighbor list of v in G^{rev}.

adj. list of G

adj. list of G^{rev}
Step 3

Perform DFS on G^{rev} and use A to select the vertex to start/restart from.

vertex with label 12

A

vertex with label 12

the 1st starting vertex
Step 3

Start the 1st DFS on G^{rev} from vertex 10. Output \{10\}.

G^{rev}

Vertex 10 is now black.
Step 3

Further Insights into SCCs
Step 3

Start the 2nd DFS on G^{rev} from 9. Output $\{8, 9\}$.

G^{rev}

Vertices 8 and 9 are now black.
Step 3

![Graph diagram]
Step 3

Start the 3rd DFS on G^{rev} from 7. Output $\{7, 5, 4, 6, 12, 11\}$.

Vertices 7, 5, 4, 6, 12, and 11 are now black.
Step 3

G^{rev}
Step 3

Start the 4th DFS on G^{rev} from 1. Output $\{1, 2, 3\}$.

DFS-tree

G^{rev}
Step 3

Scan A backwards from 1 and find no other white vertices. The algorithm finishes.
Next, we will unveil a mathematical structure of the SCC problem that suggests a generic algorithmic paradigm.
An SCC is a **sink SCC** if it has no outgoing edge in G^{scc}.

S_4 is the only sink SCC in the above example.
A conceptual SCC strategy

1. while \(G^{scc} \) not empty do
2. \(S \leftarrow \) a sink SCC
3. run DFS from any vertex in \(S \)
4. remove all the vertices in \(S \) from \(G \);
delete vertex \(S \) from \(G^{scc} \)

Example:

DFS from anywhere in \(S_4 \) finds SCC \(\{a, b, c\} \).
A conceptual SCC strategy

1. while \(G^{scc} \) not empty do
2. \(S \leftarrow \) a sink SCC
3. run DFS from any vertex in \(S \)
4. remove all the vertices in \(S \) from \(G \);
delete vertex \(S \) from \(G^{scc} \)

Example:

Delete \(S_4 \) from \(G \) and \(G^{scc} \). New sink vertex: \(S_3 \).
A conceptual SCC strategy

1. while G^{scc} not empty do
2. $S \leftarrow$ a sink SCC
3. run DFS from any vertex in S
4. remove all the vertices in S from G; delete vertex S from G^{scc}

Example:

DFS from anywhere in S_3 finds SCC \{d, e, f, g, k, l\}.
A conceptual SCC strategy

1. while G^{scc} not empty do
2. \[S \leftarrow \text{a sink SCC} \]
3. run DFS from any vertex in S
4. remove all the vertices in S from G; delete vertex S from G^{scc}

Example:

A conceptual SCC strategy

1. while G^{scc} not empty do
2. $S \leftarrow$ a sink SCC
3. run DFS from any vertex in S
4. remove all the vertices in S from G; delete vertex S from G^{scc}

Example:

DFS from anywhere in S_2 finds SCC $\{i, h\}$.
A conceptual SCC strategy

1. while G^{scc} not empty do
2. $S \leftarrow$ a sink SCC
3. run DFS from any vertex in S
4. remove all the vertices in S from G; delete vertex S from G^{scc}

Example:

Delete S_2. New sink vertex S_1.

SCC Graph G^{scc}
A conceptual SCC strategy

1. while G^{scc} not empty do
2. \(S \leftarrow \) a sink SCC
3. run DFS from any vertex in S
4. remove all the vertices in S from G; delete vertex S from G^{scc}

Example:

The 4th DFS finds SCC \{\(j\}\).
Question: Why does our SCC algorithm work on the reverse graph, as opposed to the original one?

Answer: Non-trivial to find the next sink SCC.

Not easy: You need to find a vertex in S_4 first, then a vertex in S_3, then one in S_2, and finally in S_1.
It turns out that finding the next sink SCC on the reverse graph is **much** easier.

Sink SCC = S_1.
DFS from j finds SCC $\{j\}$
It turns out that finding the next sink SCC on the reverse graph is much easier.

Sink SCC = S_2.
DFS from anywhere in S_2 finds SCC $\{h, i\}$
It turns out that finding the next sink SCC on the reverse graph is much easier.

Sink SCC = S_3.

DFS from anywhere in S_3 finds SCC $\{d, e, f, g, k, l\}$.
It turns out that finding the next sink SCC on the reverse graph is much easier.

Sink SCC = S_4. The last DFS finds SCC \{a, b, c\}.

This is exactly how our SCC algorithm finds the SCCs.