Problem 1
- \(O(n\log n)\)-time algorithm for finding the number of inversions.

Problem 2
- \(O(n\log n)\)-time algorithm to solve the dominance counting problem.
Review: Counting inversions

Problem: Given an array A of n distinct integers, count the number of inversions.

An inversion is a pair of (i, j) such that
- $1 \leq i < j \leq n$.

Example: Consider $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$. Then $(1, 2)$ is an inversion because $A[1] = 10 > A[2] = 3$. So are $(1, 3), (3, 4), (4, 5)$, and so on. There are in total 31 inversions.
Let: $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$

- $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6)$.
- The counts of inversions in A_1 and A_2 are known by solving the “counting inversion” problem recursively on A_1 and A_2.
Review: Counting inversions

- Let: \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \)
 - \(A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6) \).
 - The counts of inversions in \(A_1 \) and \(A_2 \) are known by solving the “counting inversion” problem recursively on \(A_1 \) and \(A_2 \).

- We need to count the number of crossing inversion \((i, j)\) where \(i \) is in \(A_1 \) and \(j \) in \(A_2 \).
Review: Counting inversions

- Let: $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (10, 3, 9, 8, 2)$, $A_2 = (5, 4, 1, 7, 6)$.
 - The counts of inversions in A_1 and A_2 are known by solving the “counting inversion” problem recursively on A_1 and A_2.
- We need to count the number of crossing inversion (i, j) where i is in A_1 and j in A_2.
- Binary search
 - Sort A_1 and A_2, and conduct $n/2$ binary searches ($O(n\log n)$).
Review: Counting inversions

- Let: $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (10, 3, 9, 8, 2), A_2 = (5, 4, 1, 7, 6)$.
 - The counts of inversions in A_1 and A_2 are known by solving the “counting inversion” problem recursively on A_1 and A_2.

- We need to count the number of crossing inversion (i, j) where i is in A_1 and j in A_2.

- Binary search
 - Sort A_1 and A_2, and conduct $n/2$ binary searches ($O(n\log n)$).
 - Let $f(n)$ be the worst-case running time of the algorithm on n numbers.
 - $f(n) \leq 2f([n/2]) + O(n\log n)$
 - which solves to $f(n) = O(n\log^2 n)$.
Counting inversions: a faster algorithm

Strategy: ask a harder question, and exploit it in the conquer phase.
Counting inversions and sorting

- Strategy: ask a harder question, and exploit it in the conquer phase.
- Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
Counting inversions and sorting

- Strategy: ask a harder question, and exploit it in the conquer phase.
- Given an array A of n distinct integers, output the number of inversions and produce an array to store the integers of A in ascending order.
- $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$
 - $A_1 = (2, 3, 8, 9, 10), 8$ invs; $A_2 = (1, 4, 5, 6, 7), 4$ invs.
Counting inversions and sorting

- **Strategy:** ask a harder question, and exploit it in the conquer phase.

- **Given an array** \(A \) of \(n \) distinct integers, output the number of inversions **and** produce an array to store the integers of \(A \) in ascending order.

- \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \)
 - \(A_1 = (2, 3, 8, 9, 10), 8 \text{ invs}; \ A_2 = (1, 4, 5, 6, 7), 4 \text{ invs}. \)

- **Exploit subproblem property**
 - Subarrays \(A_1, A_2 \) are sorted
 - Count crossing inversions in \(O(n) \) time.
 - Merge 2 sorted arrays in \(O(n) \) time.
Let S_1 and S_2 be two disjoint sets of n integers. Assume that S_1 is stored in an array A_1, and S_2 in an array A_2. Both A_1 and A_2 are sorted in ascending order. Design an algorithm to find the number of such pairs (a, b) satisfying the following conditions:

- $a \in S_1$,
- $b \in S_2$,
- $a > b$.
- Your algorithm must finish in $O(n)$ time.
Counting crossing inversions

- **Method**
 - Merge \(A_1 \) and \(A_2 \) into one sorted list \(A \).
 - Let: \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \)
 - \(A_1 = (2,3,8,9,10), \ A_2 = (1,4,5,6,7) \)

- We will merge them together and in the meantime maintain the count of crossing inversions.
Counting crossing inversions

Ordered list produced: Nothing yet
The count of crossing inversions : 0
Counting crossing inversions

Ordered list produced: 1
The count of crossing inversions: 0
Counting crossing inversions

- Ordering produced: 1, 2
- The count of crossing inversions: $0 + 1 = 1$.
Counting crossing inversions

Ordering produced: 1, 2, 3

The count of crossing inversions: $1 + 1 = 2$.

Newly added: (3, 1) is a crossing inversion.
Counting crossing inversions

Ordering produced: 1, 2, 3, 4

The count of crossing inversions: 2
Counting crossing inversions

Ordering produced: 1, 2, 3, 4, 5

The count of crossing inversions: 2
Counting crossing inversions

- Ordering produced: 1, 2, 3, 4, 5, 6
- The count of crossing inversions: 2.
Counting crossing inversions

Ordering produced: 1, 2, 3, 4, 5, 6, 7

The count of crossing inversions: 2

Last count
Counting crossing inversions

Ordering produced: \(1, 2, 3, 4, 5, 6, 7, 8\)

The count of crossing inversions: \(2 + 5 = 7\).

Last count

Newly added count:
(8,1), (8,4), (8,5), (8,6), (8,7)
Counting crossing inversions

- Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9
- The count of crossing inversions: $7 + 5 = 12$.

Last count: (9,1), (9,4), (9,5), (9,6), (9,7)

Newly added count:
Counting crossing inversions

Ordering produced: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The count of crossing inversions: $12 + 5 = 17$.

Last count: #integers from A_2 already in the ordered list produced

Newly added count: #integers
Counting inversions

Analysis

- Let $f(n)$ be the worst-case running time of the algorithm on n numbers.

Then

- $f(n) \leq 2f(\lfloor n/2 \rfloor) + O(n)$,
- which solves to $f(n) = O(n \log n)$.

Dominance counting

Problem

- Give an $O(n \log n)$-time algorithm to solve the dominance counting problem discussed in the class.

Point dominance definition

- Denote by \mathbb{N} the set of integers. Given a point p in two-dimensional space \mathbb{N}^2, denote by $p[1]$ and $p[2]$ its x- and y-coordinates, respectively.
Dominance counting

Let P be a set of n points in \mathbb{N}^2. Find, for each point $p \in P$, the number of points in P that are dominated by p.

Example:

We should output: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2), (p_5, 2), (p_6, 5), (p_7, 2), (p_8, 0)$.
Dominance counting

- Divide: Find a vertical line l such that P has $\lfloor n/2 \rfloor$ points on each side of the line. (k-selection, $O(n)$ time).

![Diagram showing points $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8$ on either side of line l. The points are distributed such that there are $\lfloor n/2 \rfloor$ points on each side of the line.]
Dominance counting

- **Divide:**
 - $P_1 = \text{the set of points of } P \text{ on the left of } l$.
 - $P_2 = \text{the set of points of } P \text{ on the right of } l$.

Example:

$P_1 = \{p_1, p_2, p_3, p_4\}$

$P_2 = \{p_5, p_6, p_7, p_8\}$.

Divide:

- Solve the dominance counting problem on P_1 and P_2 separately.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.

Dominance counting
Dominance counting

- Divide:
 - Solve the dominance counting problem on P_1 and P_2 separately.
 - It remains to obtain, for each point $p \in P_2$, how many points in P_1 it dominates.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.
Dominance counting

- Review: Binary search
 - Sort P_1 by y-coordinate. ($O(n \log n)$)
 - Then, for each point $p \in P_2$, we can obtain the number of points in P_1 dominated by p using binary search. ($O(n \log n)$)

Example:

P_1 in ascending of y-coordinate: p_3, p_1, p_4, p_2.

How to perform binary search to obtain the fact that p_5 dominates 2 points in P_1?

- Search using the y-coordinate of p_5.
Dominance counting: a faster algorithm

- Ask a harder question:
 - Output the dominance counts and sort P by y-coordinate.

- Scan the point from P_1 by y-coordinate in ascending order, and scan P_2 in the same way synchronously.
 - Merge the following two sorted arrays, based on y-coordinates and obtain the number of points in P_1 dominated by p.
 - $P_1 = (p_3 , p_1 , p_4 , p_2)$
 - $P_2 = (p_8 , p_7 , p_5 , p_6)$
Dominance counting

- Scan the points from P_1 by y-coordinate in ascending order. Do the same on P_2.

 - $P_1 = (p_3, p_1, p_4, p_2)$
 - $P_2 = (p_8, p_7, p_5, p_6)$

Only care about y-coordinates
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- $\bar{P} = ()$

- All the points will be stored in this array in ascending order of y-coordinate.
- To be produced by merging P_1 and P_2.
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- count = 0
- $P = ()$
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- count = 0
- $\bar{P} = (p_8)$
 - p_8 dominates 0 point in P_1.
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- count = 0
- $\bar{P} = (p_8, p_3)$
Dominance counting

- \(P_1 = (p_3, p_1, p_4, p_2) \)
- \(P_2 = (p_8, p_7, p_5, p_6) \)
- \(\overline{P} = (p_8, p_3, p_1) \)
- count = 0
Dominance counting

- \(P_1 = (p_3, p_1, p_4, p_2) \)
- \(P_2 = (p_8, p_7, p_5, p_6) \)
- count = 2
- \(\bar{P} = (p_8, p_3, p_1, p_7) \)
 - \(p_7 \) dominates 2 point in \(P_2 \)
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2) \]
\[P_2 = (p_8, p_7, p_5, p_6) \]
\[\text{count} = 4 \]
\[\bar{P} = (p_8, p_3, p_1, p_7, p_5) \]

- \(p_5 \) dominates 2 point in \(P_1 \)
Dominance counting

- $P_1 = (p_3, p_1, p_4, p_2)$
- $P_2 = (p_8, p_7, p_5, p_6)$
- count = 4
- $\bar{P} = (p_8, p_3, p_1, p_7, p_5, p_4)$
Dominance counting

- \(P_1 = (p_3, p_1, p_4, p_2) \)
- \(P_2 = (p_8, p_7, p_5, p_6) \)
- count = 4
- \(\overline{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2) \)
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2) \]
\[P_2 = (p_8, p_7, p_5, p_6) \]
\[\text{count} = 8 \]
\[\bar{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2, p_6) \]

\[\bullet p_6 \] dominates 4 points in \(P_1 \).
Dominance counting

\[P_1 = (p_3, p_1, p_4, p_2). \]
\[P_2 = (p_8, p_7, p_5, p_6). \]
\[\text{count} = 8 \]
\[\overline{P} = (p_8, p_3, p_1, p_7, p_5, p_4, p_2, p_6). \]
\[\text{Current time complexity: } O(n). \]
Dominance counting

Analysis

- Let $f(n)$ be the worst-case running time of the algorithm on n points.
- $f(n) \leq 2f([n/2]) + O(n)$,
- which solves to $f(n) = O(n \log n)$.
