Some Exercises on the “Three Basic Techniques”

Hao WU

Department of Computer Science and Engineering
Chinese University of Hong Kong
You have learned three basic techniques in algorithm design:

- Recursion
- Repeating (till success)
- Geometric Series.

In this tutorial, we will discuss some exercises that can be solved using these techniques.
Principle of Recursion

When dealing with a subproblem (same problem but with a smaller input), consider it solved, and use the subproblem’s output to continue the algorithm design.
Exercise 1

Recall that our RAM model has an atomic operation $\text{RANDOM}(x, y)$ which, given integers x, y, returns an integer chosen uniformly at random from $[x, y]$.

Suppose that you are allowed to call the operation only with $x = 1$ and $y = 128$. Describe an algorithm to obtain a uniformly random number between 1 and 100. Your algorithm must finish in $O(1)$ expected time.
Call RANDOM(1,128) and let z be its return value. Output z if it is in $[1, 100]$.

\[z = 68 \]

Otherwise, repeat from the beginning.

\[z = 120 \]
We need to call the operator at most twice in expectation because each
time z has probability $\frac{100}{128}$ to fall in the range we want. Therefore,
our algorithm finishes in $O(1)$ expected time.
Exercise 2

Suppose that we enforce a harder constraint that you are allowed to call \texttt{RANDOM}(x, y) only with $x = 0$ and $y = 1$. Describe an algorithm to generate a uniformly random number in $[1, n]$ for an arbitrary integer n. Your algorithm must finish in $O(\log n)$ expected time.
Suppose n is a power of 2; then how can we use recursion to solve this problem?

1. Set $z \leftarrow \text{RANDOM}(x, y)$.
2. If $z = 0$, we have a subproblem: generate a uniformly random number in the first half of the range;
 If $z = 1$, we have a subproblem: generate a uniformly random number in the second half of the range.

Considering the subproblem solved, we finish the algorithm.
Analysis of the Algorithm

\[f(1) = O(1) \]
\[f(n) \leq f(n/2) + O(1) \], for \(n > 1 \)

Thus, we have

\[f(n) = O(\log n) \]

Think: Why does the algorithm require \(n \) to be a power of 2?
Next, we will extend our algorithm to support values of n that are not powers of 2.

First, obtain the smallest power of 2 that is at least n.

- Try 1, 2, 4, ..., until reaching m such that $n \leq m < 2n$. This takes $O(\log n)$ time.

We have known how to generate a uniformly random number y in $[1, m]$ in $O(\log n)$ time.

If $y \leq n$, return y; otherwise, repeat the algorithm. At most 2 repeats are needed in expectation. The overall time is there $O(\log n)$ in expectation.
Exercise 3

Recall the k-selection problem:

You are given a set S of n integers in an array and an integer $k \in [1, n]$. Find the k-th smallest integer of S.

Suppose there is a deterministic algorithm A_1 which returns the median of n integers in $O(n)$ time. Can you use A_1 as a blackbox to solve k-selection in $O(n)$ time?
Consider the following algorithm.

1. Get the median \(v \) of \(S \) from \(A_1(S) \).
2. Divide \(S \) into \(S_1 \) and \(S_2 \) where
 - \(S_1 \) = the set of elements in \(S \) less than or equal to \(v \);
 - \(S_2 \) = the set of elements in \(S \) greater than \(v \).
3. If \(|S_1| \geq k \), then return \(S' = S_1 \) and \(k' = k \); else return \(S' = S_2 \) and \(k' = k - |S_1| \).

Since \(A_1 \) is deterministic, we always succeed in obtaining a subproblem with size no larger than \(\left\lceil \frac{|S|}{2} \right\rceil \).
Analysis of the Algorithm

\[f(1) = O(1) \]
\[f(n) \leq f(n/2) + O(n) \]

Thus, \(f(n) = O(n) \).

What if \(A_1 \) returns the \(\lceil \frac{4}{5} n \rceil \)-th smallest integer of \(n \) integers in \(O(n) \) time. Can you still use \(A_1 \) as a blackbox to solve \(k \)-selection in \(O(n) \) time?
Instead of shrinking the size of subproblem by half, we shrink it by \(\frac{4}{5} \).

We can still use \(A_1 \) to shrink the problem size by a constant factor. From the geometric series we know that the total cost will be \(O(n) \).

Think: If \(A_1 \) returns the \(\left\lceil \frac{99}{100} n \right\rceil \)-th smallest integer of \(n \) integers in \(O(n) \) time, can you still use \(A_1 \) as a blackbox to solve \(k \)-selection in \(O(n) \) time?
Exercise 4

Let’s still focus on the k-selection problem. In the lecture, we shrink the input size of the subproblem into at most $\frac{2}{3} n$. Now, we want to shrink the input size into at most $\frac{n}{2}$. Give an algorithm to achieve the purpose in $O(n)$ expected time.
A simple solution: run our \(\frac{2n}{3} \)-algorithm twice. The number of remaining elements becomes at most \(\frac{4n}{9} \).
Next, let us look at another way to achieve the purpose, assuming for simplicity that n is a multiple of 4.

First, divide the rank space into 4 equal partitions.

Second, take an element p_1 from S uniformly at random. Repeat until $\text{rank}(p_1)$ is in range $[\frac{n}{4}, \frac{n}{2}]$.
Third, take an element p_2 from S uniformly at random. Repeat until $\text{rank}(p_2)$ is in range $\left[\frac{1}{2}n, \frac{3}{4}n\right]$.

![Diagram showing p_1 and p_2 with rank intervals]

- If $k \leq \text{rank}(p_1)$, set $S' = \text{the set of elements in } S \text{ less than or equal to } p_1$, $k' = k$.

- If $\text{rank}(p_1) < k < \text{rank}(p_2)$, set $S' = \text{the set of elements in } S \text{ larger than } p_1 \text{ and smaller than } p_2$, $k' = k - \text{rank}(p_1)$.

- If $k \geq \text{rank}(p_2)$, set $S' = \text{the set of elements in } S \text{ larger than or equal to } p_2$, $k' = k - \text{rank}(p_2)$.

Some Exercises on the “Three Basic Techniques”
In any case, we have $|S'| \leq \frac{n}{4} + \frac{n}{4} = \frac{n}{2}$.

In expectation, 4 repeats are needed for p_1, and 4 repeats for p_2 (think: why?).