Tutorial 12: Further Discussion on Set Cover and Hitting Set

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Set Cover

Let U be a finite set called the universe.

We are given a family S where

- each member of S is a set $S \subseteq U$;
- $\bigcup_{S \in S} S = U$.

A sub-family $C \subseteq S$ is a universe cover if every element of U appears in at least one set in C.

- Define the cost of C as $|C|$.

The set cover problem:
Find a universe cover with the smallest cost.
Example: $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $S = \{S_1, S_2, \ldots, S_5\}$ where

$S_1 = \{1, 2, 3, 4\}$

$S_2 = \{2, 5, 7\}$

$S_3 = \{6, 7\}$

$S_4 = \{1, 8\}$

$S_5 = \{1, 2, 3, 8\}$.

An optimal solution is $C = \{S_1, S_2, S_3, S_4\}$.

Our Approximation Algorithm

1. \(C = \emptyset \)
2. while \(U \) still has elements not covered by any set in \(C \)
3. \(F \leftarrow \) the set of elements in \(U \) not covered by any set in \(C \)
 /* for each set \(S \in S \), define its benefit to be \(|S \cap F|\) */
4. add to \(C \) a set in \(S \) with the largest benefit
5. return \(C \)

We proved in the lecture that the algorithm is \((1 + \ln |U|)\)-approximate.

Next, we will prove that the algorithm is also \(h \)-approximate, where \(h = \max_{S \in S} |S| \).
Example: \(S = \{ S_1, S_2, ..., S_5 \} \) where

\[
\begin{align*}
S_1 &= \{1, 2, 3, 4\} \\
S_2 &= \{2, 5, 7\} \\
S_3 &= \{6, 7\} \\
S_4 &= \{1, 8\} \\
S_5 &= \{1, 2, 3, 8\}.
\end{align*}
\]

Then, \(h = 4 \).
Theorem: The algorithm returns a universe cover with cost at most $h \cdot OPT_S$.

Proof. Suppose that our algorithm picks t sets. Every time the algorithm picks a set, at least one new element is covered. For each $i \in [1, t]$, denote by e_i an arbitrary element that is newly covered when the i-th set is picked.

Let C^* be an optimal universe cover. Because each e_i exists in at least one set of C^*, we have:

\[
 t = \sum_{i=1}^{t} 1 \leq \sum_{i=1}^{t} \# \text{ sets in } C^* \text{ containing } e_i \\
 \leq \sum_{e \in U} \# \text{ sets in } C^* \text{ containing } e \\
 = \sum_{S \in C^*} |S| \leq |C^*| \cdot h.
\]
Corollary: If \(h = O(1) \), then our algorithm achieves a constant approximation ratio.

Remark: With a more careful analysis, we can actually prove that our algorithm has an approximation ratio of \(1 + \ln h \).

- Not required in this course.
Our set cover algorithm can be used to solve many problems with approximation guarantees. Next, we will see two examples.
Vertex Cover

\(G = (V, E)\) is an undirected graph. We want to find a small subset \(V' \subseteq V\) such that every edge of \(E\) is incident to at least one vertex in \(V'\). The optimization goal is to minimize \(|V'|\).

Convert the problem to set cover:

- For every \(v \in V\), define \(S_v\) = the set of edges incident on \(v\).
- Apply our algorithm on the set-cover instance: \(S = \{S_v \mid v \in V\}\).

This gives an \(O(\ln |V|)\)-approximate solution.

Remark: We have already learned how to ensure an approximation ratio of 2. But the point here is to demonstrate the usefulness of set cover, rather than improving the approximation ratio.
Red-Black Coverage

\(R = \) a set of \(n \) red points in 2D space
\(B = \) a set of \(n \) black points in 2D space
\(\epsilon = \) a positive integer.

A subset \(S \subseteq R \) is a \textbf{\(B \)-guarding set} if, for every black point \(b \in B \), there is at least one point \(r \in S \) with \(\text{dist}(r, b) \leq \epsilon \).

\(\text{OPT} = \) the smallest size of all \(B \)-guarding sets.
\textbf{Goal:} Return a \(B \)-guarding set with size \(\text{OPT} \cdot O(\log n) \) (assume that at least one \(B \)-guarding set exists).
Convert the problem to set cover:

- For every $r \in R$, define $S_r = \{ b \mid \text{dist}(r, b) \leq \epsilon \}$.
- Apply our algorithm on the set-cover instance: $S = \{ S_r \mid r \in R \}$.

This gives an $O(\log n)$-approximate solution.
Next, we will turn our attention to the hitting set problem, which is in fact equivalent to set cover.
Let U be a finite set called the universe.

We are given a family S where

- each member of S is a set $S \subseteq U$;
- $\bigcup_{S \in S} S = U$.

A subset $H \subseteq U$ hits a set $S \in S$ if $H \cap S \neq \emptyset$.
A subset $H \subseteq U$ is a hitting set if it hits all the sets in S.

The hitting set problem:
Find a hitting set H of the minimize size.
Example: \(U = \{1, 2, 3, 4, 5\} \) and \(S = \{S_1, S_2, \ldots, S_8\} \) where

\[
\begin{align*}
S_1 &= \{1, 4, 5\} \\
S_2 &= \{1, 2, 5\} \\
S_3 &= \{1, 5\} \\
S_4 &= \{1\} \\
S_5 &= \{2\} \\
S_6 &= \{3\} \\
S_7 &= \{2, 3\} \\
S_8 &= \{4, 5\}
\end{align*}
\]

An optimal solution is \(H = \{1, 2, 3, 4\} \).
Next, we will provide a matrix-view of set cover and hitting set, which hopefully will help you better understand their equivalence. We will achieve the purpose through a “bridging problem” defined on a matrix.
M = an $n \times m$ matrix.

$M[i, j] = 0$ or 1 for every $i \in [1, n]$ and $j \in [1, m]$.

Constraint: At least one 1 at each row and at each column.

Row Cover: a set R of rows s.t. every column has at least one 1 at the rows of R.

OPT_{row} : the minimum size of all row covers.

Example

$$M = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

An optimal row cover takes the first four rows.

Using our set-cover algorithm, we can find a row cover of size $OPT_{row} \cdot O(\log m)$.
Let us now relate the matrix problem to hitting set.

Consider the hitting set instance \(U = \{1, 2, 3, 4, 5\} \) and \(S = \{S_1, S_2, ..., S_8\} \) where \(S_1 = \{1, 4, 5\} \), \(S_2 = \{1, 2, 5\} \), \(S_3 = \{1, 5\} \), \(S_4 = \{1\} \), \(S_5 = \{2\} \), \(S_6 = \{3\} \), \(S_7 = \{2, 3\} \), and \(S_8 = \{4, 5\} \).

We can describe the instance with

\[
M = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

where the \(i \)-th row corresponds to integer \(i \in U \) and the \(j \)-th column corresponds to \(S_j \). Now, the goal is to find an optimal row cover! We can find an \(O(\log m) \) approximation using our set-cover algorithm.
We have seen why hitting set can be converted to set cover. We will now discuss the opposite.

Consider the matrix row cover problem again.

Example

$$M = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

An optimal row cover takes the first four rows.

We can also interpret the problem as a **hitting set** problem!

See the previous slide.
Consider the set-cover instance $U = \{1, 2, \ldots, 8\}$ and $S = \{S_1, S_2, \ldots, S_5\}$ where $S_1 = \{1, 2, 3, 4\}$, $S_2 = \{2, 5, 7\}$, $S_3 = \{6, 7\}$, $S_4 = \{1, 8\}$, and $S_5 = \{1, 2, 3, 8\}$.

We can describe the instance with

$$
M = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
$$

where each row corresponds to a set, and each column corresponds to an integer in U. The goal is again to find an optimal row cover!

Hence, if we have a ρ-approximate algorithm for hitting set, we can achieve approximation ratio ρ for set cover as well.