Detecting Negative Cycles with Floyd-Warshall

Fanbin Lu

Department of Computer Science and Engineering
Chinese University of Hong Kong
We already know how to use the Floyd-Warshall (FW) algorithm to solve the APSP (all-pairs shortest path) problem when the input graph \(G = (V, E) \) contains no negative cycles.

Just like Bellman-Ford’s algorithm, the FW algorithm can also be used to **detect** negative cycles. For that purpose, FW runs in \(O(|V|^3) \) time, which is never better than the \(O(|V||E|) \) complexity of Bellman-Ford’s. Nevertheless, the correctness of FW is easier to understand.
Let us start by reviewing the Floyd-Warshall algorithm.

Define \(spdist(i, j \mid \leq k) \) as the smallest length of all paths from the vertex with id \(i \) to the vertex with id \(j \) that pass only intermediate vertices with ids \(\leq k \).

For \(k = 0 \), \(spdist(i, j \mid \leq 0) \) equals \(w(i, j) \) if \(E \) has an edge \((i, j)\), or \(\infty \), otherwise.

Example: Suppose \(a, b, ..., g \) have IDs 1, 2, ..., 7, respectively.

\[
spdist(3, 5 \mid 0) = -1, \quad spdist(3, 7 \mid 0) = \infty,
\]
Example

We use dynamic programming to compute $spdist(i, j \mid \leq k)$ for all i, j, k.

First, decide $spdist(i, j \mid \leq 0)$ for all $i, j \in [1, 7]$.
Example

\[spdist(i, j \mid \leq k) = \]
\[\min \left\{ spdist(i, j \mid \leq k - 1), \quad spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \right\} \]

Then, compute \(spdist(i, j \mid \leq 1) \) for all \(i, j \in [1, 7] \). No changes.
Example

\[spdist(i, j \mid \leq k) = \]
\[
\min \left\{ spdist(i, j \mid \leq k - 1),
\quad spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \right\}
\]

Compute \(spdist(i, j \mid \leq 2) \) for all \(i, j \in [1, 7] \).
Example

\[spdist(i, j \mid \leq k) = \]

\[\min \left\{ \begin{array}{l}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{array} \right\} \]

Compute \(spdist(i, j \mid \leq 3) \) for all \(i, j \in [1, 7] \).
Example

\[\text{spdist}(i, j \mid \leq k) = \]

\[\min \left\{ \text{spdist}(i, j \mid \leq k - 1), \text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1) \right\} \]

Compute \(\text{spdist}(i, j \mid \leq 4) \) for all \(i, j \in [1, 7] \).
Example

$$spdist(i, j \mid \leq k) =$$

$$\min \left\{ spdist(i, j \mid \leq k - 1), spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1) \right\}$$

Compute $$spdist(i, j \mid \leq 5)$$ for all $$i, j \in [1, 7]$$.

<table>
<thead>
<tr>
<th>vertex $$v$$</th>
<th>$$a$$</th>
<th>$$b$$</th>
<th>$$c$$</th>
<th>$$d$$</th>
<th>$$e$$</th>
<th>$$f$$</th>
<th>$$g$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$a$$</td>
<td>$$\infty$$</td>
<td>1</td>
<td>2</td>
<td>-6</td>
<td>1</td>
<td>$$\infty$$</td>
<td>-9</td>
</tr>
<tr>
<td>$$b$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>$$\infty$$</td>
<td>-4</td>
</tr>
<tr>
<td>$$c$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>-2</td>
<td>-1</td>
<td>$$\infty$$</td>
<td>-5</td>
</tr>
<tr>
<td>$$d$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>-3</td>
</tr>
<tr>
<td>$$e$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>5</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>2</td>
</tr>
<tr>
<td>$$f$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>6</td>
<td>1</td>
<td>$$\infty$$</td>
<td>3</td>
</tr>
<tr>
<td>$$g$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>$$\infty$$</td>
<td>2</td>
<td>$$\infty$$</td>
</tr>
</tbody>
</table>
Example

\[\text{spdist}(i, j \mid \leq k) = \]
\[\min \left\{ \begin{array}{l}
\text{spdist}(i, j \mid \leq k - 1) \\
\text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1)
\end{array} \right\} \]

Compute \(\text{spdist}(i, j \mid \leq 6) \) for all \(i, j \in [1, 7] \).
Example

\[spdist(i, j \mid \leq k) = \]
\[\min \left\{ \begin{array}{l}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{array} \right. \]

Compute \(spdist(i, j \mid \leq 7) \) for all \(i, j \in [1, 7] \).

Now we are done.
Next, we will prove

\[\text{spdist}(i, j \mid \leq k) = \min \left\{ \begin{array}{l}
\text{spdist}(i, j \mid \leq k - 1) \\
\text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1)
\end{array} \right\} \]

LHS \leq RHS is easy to prove. We will show only LHS \geq RHS.
Proof: The goal is to prove

\[\text{spdist}(i, j \mid \leq k) \geq \]
\[\min \left\{ \text{spdist}(i, j \mid \leq k - 1), \right. \]
\[\left. \text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1) \right\} \]

Consider a path \(\pi \) from \(u \) to \(v \) that uses intermediate vertices only from \(\{1, 2, \cdots, k\} \) and has length \(\text{spdist}(u, v \mid \leq k) \).

If \(k \) is not an intermediate vertex of \(\pi \), then \(\pi \) has length at least \(\text{spdist}(u, v \mid \leq k - 1) \) (by definition).

Next, we discuss the case when \(k \) is an intermediate vertex of \(\pi \).
Goal: to prove

\[spdist(i, j \mid \leq k) \geq \min \left\{ \begin{array}{ll}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{array} \right. \]

Divide the case where \(k \) is an intermediate vertex of \(\pi \) into:

- **\(k \) appears only once on \(\pi \);**

 \[spdist(i, k \mid \leq k - 1) \quad spdist(k, j \mid \leq k - 1) \]

- **\(k \) appears multiple times.**

 remove these cycles
What if the graph $G = (V, E)$ contains negative cycles?

A negative cycle: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$.

Next, we will modify the FW algorithm for negative cycle detection.
Define a **simple path** from u to v as a path π satisfying:

- π starts from u and ends at v.
- u is not an intermediate vertex of π.
- v is not an intermediate vertex of π.
- no intermediate vertex appears twice on π.

Remark: The simple-path definition allows $u = v$.
We aim to find all-pairs shortest simple paths instead.

Re-define \(spdist(i, j \mid \leq k) \) as the smallest length of all simple paths from the vertex with id \(i \) to the vertex with id \(j \) that pass only intermediate vertices with ids \(\leq k \).

The following relationship still holds

\[
spdist(i, j \mid \leq k) = \min \left\{ \begin{array}{l}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{array} \right\
\]

The proof is similar to the no-negative-cycle scenario and omitted.
Example:

We use dynamic programming to compute $spdist(i, j \mid \leq k)$ for all i, j, k.

For $k = 0$, $spdist(i, j \mid \leq 0)$ equals $w(i, j)$ if E has an edge (i, j), or ∞, otherwise.
Example

\[spdist(i, j \mid \leq k) = \]
\[
\min \left\{ \begin{array}{l}
 spdist(i, j \mid \leq k - 1) \\
 spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{array} \right\}
\]

Then, compute \(spdist(i, j \mid \leq 1) \) for all \(i, j \in [1, 7] \).
Example

\[\text{spdist}(i, j \mid \leq k) = \min \left\{ \text{spdist}(i, j \mid \leq k - 1), \text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1) \right\} \]

Then, compute \(\text{spdist}(i, j \mid \leq 2) \) for all \(i, j \in [1, 7] \).
Example

$$spdist(i, j \mid \leq k) = \min \begin{cases}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{cases}$$

Then, compute $spdist(i, j \mid \leq 3)$ for all $i, j \in [1, 7]$.
Example

\[spdist(i, j \mid \leq k) = \]
\[\min \begin{cases}
 spdist(i, j \mid \leq k - 1) \\
 spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{cases} \]

Then, compute \(spdist(i, j \mid \leq 4) \) for all \(i, j \in [1, 7] \).
Example

\[spdist(i, j \mid \leq k) = \]
\[
\min \begin{cases}
spdist(i, j \mid \leq k - 1) \\
spdist(i, k \mid \leq k - 1) + spdist(k, j \mid \leq k - 1)
\end{cases}
\]

Then, compute \(spdist(i, j \mid \leq 5) \) for all \(i, j \in [1, 7] \).
Example

\[
spdist(i, j | \leq k) = \min \left\{ \begin{array}{l}
spdist(i, j | \leq k - 1) \\
spdist(i, k | \leq k - 1) + spdist(k, j | \leq k - 1)
\end{array} \right.
\]

Then, compute \(spdist(i, j | \leq 6)\) for all \(i, j \in [1, 7]\).
Example

\[\text{spdist}(i, j \mid \leq k) = \]

\[
\min \left\{ \begin{array}{l}
\text{spdist}(i, j \mid \leq k - 1) \\
\text{spdist}(i, k \mid \leq k - 1) + \text{spdist}(k, j \mid \leq k - 1)
\end{array} \right.
\]

Then, compute \(\text{spdist}(i, j \mid \leq 7) \) for all \(i, j \in [1, 7] \).
Check the diagonal results:

<table>
<thead>
<tr>
<th>vertex v</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-6</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>-7</td>
<td>-6</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>c</td>
<td>-8</td>
<td>-7</td>
<td>-6</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
</tr>
<tr>
<td>d</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-6</td>
<td>-5</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>e</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

The graph G has a negative cycle if and only if $spdist(u, u | \leq n) < 0$ for some $u \in V$.
Next, we will prove that the algorithm is correct.
Proof of correctness. First, we prove that if G has a negative cycle, then $spdist(u, u |\leq n) < 0$ for some $u \in V$.

Consider a negative cycle C. Let u be the largest vertex on C, and v be any other vertex on C.

Define π_1 as the path from u to v on C, and π_2 as the path from v to u on C. Length of π_1 is at least $spdist(u, v |\leq n - 1)$. Length of π_2 is at least $spdist(v, u |\leq n - 1)$. Thus,

$$spdist(u, u |\leq n) \leq spdist(u, v |\leq n - 1) + spdist(v, u |\leq n - 1) \leq \text{length of } C < 0.$$
Proof of correctness (cont.). Next, we prove that if \(spdist(u, u | \leq n) < 0 \) for some \(u \in V \), \(G \) has a negative cycle.

Let \(u \) be an arbitrary vertex satisfying \(spdist(u, u | \leq n) < 0 \). Then, there is a simple path from \(u \) to itself, with length \(spdist(u, u | \leq n) < 0 \). The simple path is a negative cycle.