Problem 1. Prove: all the SCCs of a directed simple graph are mutually disjoint.

Problem 2. Let $G = (V, E)$ be a directed simple graph and G^{scc} be the SCC graph defined in our lecture. Let S_1 and S_2 be two SCCs of G. Prove: if S_1 cannot reach S_2 in G^{scc}, then no vertex of S_1 can reach any vertex of S_2 in G.

Problem 3. Prove: G and G^{scc} have the same SCCs.

Problem 4. Prof. Goofy proposes his own SCC algorithm:

- Step 1: Perform DFS on the input graph G and compute a label for each vertex (just like Step 1 of our algorithm).
- Step 2: Perform another DFS on G (note: not on G^{rev}) subject to the following rules:
 - Start the first DFS from the vertex with the smallest label.
 - Whenever a restart is needed, do so from the white vertex with the smallest label.

Give a counterexample to prove that Prof. Goofy is wrong.

Problem 5. Design an algorithm to generate G^{scc} from $G = (V, E)$ in $O(|V| + |E|)$ time.