Problem 1. Explain how to implement the operation \(x \mod y \) in \(O(1) \) time where \(x \) and \(y \) are positive integers.

Problem 2. For the \(k \)-selection problem, suppose that the input is an array of 12 elements: \((58, 23, 98, 83, 32, 24, 18, 45, 85, 91, 2, 34) \). Recall that our randomized algorithm first selects a number \(v \) and then recursively solves a subproblem. Suppose that \(v = 34 \) and \(k = 10 \). What is the size of the array for the subproblem?

Problem 3 (Textbook Exercise 9.3-5). The median of a set \(S \) of \(n \) elements is the \(\lfloor n/2 \rfloor \) smallest element in \(S \). Suppose that you are given a deterministic algorithm for finding the median of \(S \) (stored in an array) in \(O(n) \) worst-case time. Using this algorithm as a black box, design another deterministic algorithm for solving the \(k \)-selection problem (for any \(k \in [1, n] \)) in \(O(n) \) worst-case time.

Problem 4. Let \(S \) be a set of \(n \) integers, and \(k_1, k_2 \) be arbitrary integers satisfying \(1 \leq k_1 \leq k_2 \leq n \). Suppose that \(S \) is given in an array. Give an \(O(n) \) expected time algorithm to report all the integers whose ranks in \(S \) are in the range \([k_1, k_2] \). Recall that the rank of an integer \(v \) in \(S \) equals the number of integers in \(S \) that are at most \(v \).

Problem 5* (Textbook Exercise 9-2). We are given an array that stores a set \(S \) of \(n \) distinct integers. Set \(W = \sum_{e \in S} e \). Describe an algorithm to find the element \(e^* \in S \) that makes both of the following hold:

- \(\sum_{e < e^*} e < W/2 \)
- \(\sum_{e > e^*} e \leq W/2 \).

Your algorithm should finish in \(O(n) \) time (\(O(n) \) expected time is acceptable).

(Hint: First convince yourself that such \(e^* \) is unique, and then adapt the \(k \)-selection algorithm).