Approximation Algorithms 2: Traveling Salesman

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
\[G = (V, E) \] is a complete undirected graph. Each edge \(e \in E \) carries a non-negative weight \(w(e) \).

A Hamiltonian cycle of \(G \) is a cycle passing all the vertices in \(V \).

\(G \) satisfies triangle inequality: for any \(x, y, z \in V \), it holds that \(w(x, z) \leq w(x, y) + w(y, z) \).

The traveling salesman problem: Find a Hamiltonian cycle with the shortest length.

An optimal solution: \(acdbea \) with length 14.
The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in $|V|$.

- Such algorithms cannot exist if $P \neq NP$.
\mathcal{A} = an algorithm that, given any legal input (G, w), returns a Hamiltonian cycle of G.

Denote by $OPT_{G,w}$ the shortest length of all Hamiltonian cycles of G under the weight function w.

\mathcal{A} is a ρ-approximate algorithm for the traveling salesman problem if, for any legal input (G, w), \mathcal{A} can return a Hamiltonian cycle with length at most $\rho \cdot OPT_{G,w}$.

The value ρ is the approximation ratio. We say that \mathcal{A} achieves an approximation ratio of ρ.
Next, we will describe a 2-approximate algorithm.

Step 1: Obtain an MST (minimum spanning tree) T of G.

Example:

```
   a
  /|
 /  |
 b   e
  |
  2
  |
 c
  4
  |
  5
   d
```

\Rightarrow

```
   a
   |
   d
   |
   e
```

\[a, b, c, d, e \]
Algorithm

Step 2: Obtain a walk of T: this is a path π where

- the start and end vertices of π are the same;
- every edge of T appears on π exactly twice.

Example:

A possible walk: $\pi = cacdcebec$

π can be obtained using DFS in $O(|V|)$ time.
Step 3: Construct a sequence σ of vertices as follows. First, add the first vertex of π to σ. Then, go through π; when crossing an edge (u, v):

- If v has not been seen before, append v to σ.
- Otherwise, do nothing.

Finally, add the last vertex of π to σ.

The sequence σ now gives a Hamiltonian cycle.

Return this cycle.
Example:

\[\pi = cacdcebec \]
\[\sigma = cadbec \]
Weight of the Hamiltonian cycle: 18
Theorem 1: Our algorithm returns a Hamiltonian cycle with length at most $2 \cdot OPT_{G,w}$.

Next, we will prove the theorem.
Let \(w(T) \) be the weight of (the MST) \(T \):
\[
w(T) = \sum_{\text{edge } e \text{ in } T} w(e)
\]

Lemma 1: \(\text{OPT}_{G,w} \geq w(T) \).

Proof: Given any Hamiltonian cycle, we can remove an (arbitrary) edge to obtain a spanning tree of \(G \). The lemma follows from the fact that \(T \) is an MST.

Next, we will show that our Hamiltonian cycle \(\sigma \) has length at most \(2 \cdot w(T) \), which will complete the proof of Theorem 1.
Lemma 2: The walk π has length $2 \cdot w(T)$.

Proof: Every edge of T appears twice in π. \square
Lemma 3: The length of our Hamiltonian cycle σ is at most the length of π.

Proof: Let the vertex sequence in π be $u_1 u_2 \ldots u_t$ for some $t \geq 1$. Let σ be the vertex sequence $u_{i_1} u_{i_2} \ldots u_{i_{|V|+1}}$ where

$$i_1 = 1 < i_2 < \ldots < i_{|V|} < i_{|V|+1} = t.$$

By triangle inequality, we have for each $j \in [1, |V|]$:

$$w(u_{i_j}, u_{i_{j+1}}) \leq \sum_{k=i_j}^{i_{j+1}-1} w(u_k, u_{k+1}).$$

Hence:

$$\text{length of } \sigma = \sum_{j=1}^{|V|} w(u_{i_j}, u_{i_{j+1}}) \leq \sum_{k=1}^{t-1} w(u_k, u_{k+1}) = \text{length of } \pi.$$