Approximation Algorithms 1: Vertex Cover and MAX-3SAT

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In computer science, there is a set of **NP-hard** problems such that

- nobody has found a polynomial-time algorithm for **any** of those problems;

- no polynomial-time algorithms can exist for **any** of those problems unless **P = NP**.

P = the set of problems that can be solved in polynomial time on a **deterministic** Turing machine

NP = the set of problems that can be solved in polynomial time on a **non-deterministic** Turing machine

Turing machines are formalized in CSCI3130 (Formal Languages and Automata Theory), and so is the notion of NP-hard.

Whether **P = NP** is still unsolved to this day.
What can we do if a problem is NP-hard?

The rest of the course will focus on a principled approach for tackling NP-hard problems: approximation.

In many problems, even though an optimal solution may be expensive to find, we can find near-optimal solutions efficiently.

Next, we will see two examples: vertex cover and MAX-3SAT.
The Vertex Cover Problem
$G = (V, E)$ is a simple undirected graph. A subset $S \subseteq V$ is a **vertex cover** of G if every edge $\{u, v\} \in E$ is incident to at least one vertex in S.

The V.C. Problem: Find a vertex cover of the smallest size.

Example:

![Graph diagram]

An optimal solution is $\{a, f, c, e\}$.
The vertex cover problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in $|V|$.
- Such algorithms cannot exist if $P \neq NP$.
Approximation Algorithms

\(\mathcal{A} \) = an algorithm that, given any legal input \(G = (V, E) \), returns a vertex cover of \(G \).

\(OPT_G \) = the smallest size of all the vertex covers of \(G \).

\(\mathcal{A} \) is a \(\rho \)-approximate algorithm for the vertex cover problem if, for any legal input \(G = (V, E) \), \(\mathcal{A} \) can return a vertex cover with size at most \(\rho \cdot OPT_G \).

The value \(\rho \) is the approximation ratio. We say that \(\mathcal{A} \) achieves an approximation ratio of \(\rho \).
Consider the following algorithm.

Input: \(G = (V, E) \)

\(S = \emptyset \)

while \(E \) is not empty **do**

- pick an arbitrary edge \(\{u, v\} \) in \(E \)
- add \(u, v \) to \(S \)
- remove from \(E \) all the edges of \(u \) and all the edges of \(v \)

return \(S \)

It is easy to show:

- \(S \) is a vertex cover of \(G \);

- The algorithm runs in time polynomial to \(|V| \) and \(|E| \).

We will prove later that the algorithm is 2-approximate.
Example:

Suppose we start by picking edge \{b, c\}. Then, \(S = \{b, c\}\) and \(E = \{\{a, e\}, \{a, d\}, \{d, e\}, \{d, f\}\}\).

Any edge in \(E\) can then be chosen. Suppose we pick \{a, e\}. Then, \(S = \{a, b, c, e\}\) and \(E = \{\{d, f\}\}\).

Finally, pick \{d, f\}. \(S = \{a, b, c, d, e, f\}\) and \(E = \emptyset\).
Theorem 1: The algorithm returns a set of at most $2 \cdot \text{OPT}_G$ vertices.

Let M be the set of edges picked.

Example: In the previous example, $M = \{\{b, c\}, \{a, e\}, \{d, f\}\}$.
Lemma 1: The edges in M do not share any vertices.

Proof: Suppose that M has edges e_1 and e_2 both incident to a vertex v. W.l.o.g., assume that e_1 was picked before e_2. After picking e_1, the algorithm deleted all the edges of v, because of which e_2 could not have been picked, giving a contradiction.

Lemma 2: $|M| \leq \text{OPT}_G$.

Proof: Any vertex cover must include at least one vertex of each edge in M. $|M| \leq \text{OPT}$ follows from Lemma 1.

Theorem 1 holds because the algorithm returns exactly $2|M|$ vertices.
The MAX-3SAT Problem
A **variable**: a boolean unknown x whose value is 0 or 1.
A **literal**: a variable x or its negation \overline{x}.
A **clause**: the OR of 3 literals with different variables.

$S = \text{a set of clauses}$
$\mathcal{X} = \text{the set of variables appearing in at least one clause of } S$
A **truth assignment** of S: a function from \mathcal{X} to $\{0, 1\}$.

A truth assignment f **satisfies** a clause in S if the clause evaluates to 1 under f.

The MAX-3SAT Problem: Let S be a set of n clauses. Find a truth assignment of S to maximize the number of clauses satisfied.
Example:

\[S = \{ x_1 \lor x_2 \lor x_3, \]
\[x_1 \lor x_2 \lor \bar{x}_3, \]
\[x_1 \lor \bar{x}_2 \lor x_3, \]
\[x_1 \lor \bar{x}_2 \lor \bar{x}_3, \]
\[\bar{x}_1 \lor x_3 \lor x_4, \]
\[\bar{x}_1 \lor x_3 \lor \bar{x}_4, \]
\[\bar{x}_1 \lor \bar{x}_3 \lor x_4, \]
\[\bar{x}_1 \lor \bar{x}_3 \lor \bar{x}_4 \}. \]

\[n = 8 \text{ and } \mathcal{X} = \{ x_1, x_2, x_3, x_4 \}. \]

The truth assignment \(x_1 = x_2 = x_3 = x_4 = 1 \) satisfies 7 clauses. It is impossible to satisfy 8.
The MAX-3SAT problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in n.
- Such algorithms cannot exist if $P \neq NP$.
Approximation Algorithms

A = an algorithm that, given any legal input S, returns a truth assignment of S.

OPT_S = the largest number of clauses that a truth assignment of S can satisfy.

Z_S = the number of clauses satisfied by the truth assignment A returns.

- Z_S is a random variable if A is randomized.

A is a randomized ρ-approximate algorithm for MAX-3SAT if $E[Z_S] \geq \rho \cdot OPT_S$ holds for any legal input S.

The value ρ is the approximation ratio. We also say that A achieves an approximation ratio of ρ in expectation.
Consider the following algorithm.

Input: a set \(S \) of clauses with variable set \(\mathcal{X} \)

for each variable \(x \in \mathcal{X} \) do
 toss a fair coin
 if the coin comes up heads then \(x \leftarrow 1 \)
 else \(x \leftarrow 0 \)

It is clear that the algorithm runs in \(O(n) \) time.
Next, we show that the algorithm achieves an approximation ratio \(7/8 \) in expectation.
Theorem 2: The algorithm produces a truth assignment that satisfies $\frac{7}{8} n$ clauses in expectation.

Proof: It suffices to show that each clause is satisfied with probability $7/8$. W.l.o.g., suppose that the clause is $x_1 \lor x_2 \lor x_3$. The clause is 0 if and only if x_1, x_2, and x_3 are all 0. The probability for $x_1 = x_2 = x_3 = 0$ is $1/8$.

Think: What about a clause like $x_1 \lor x_2 \lor \overline{x}_3$?