Review: Single Source Shortest Paths with Non-Negative Weights

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
We will now commence our discussion on the **single source shortest path** (SSSP) problem. This lecture will start with **Dijkstra’s algorithm**, which should have been covered in CSCI2100.
Let $G = (V, E)$ be a simple directed graph.

Let w be a function that maps each edge $e \in E$ to a non-negative integer value $w(e)$, which we call the weight of e.

G and w together define a weighted simple directed graph.
Example

The integer on each edge indicates its weight. For example, $w(d, g) = 1$, $w(g, f) = 2$, and $w(c, e) = 10$.
Shortest Path

Consider a path in G: $(v_1, v_2), (v_2, v_3), \ldots, (v_\ell, v_{\ell+1})$, for some integer $\ell \geq 1$. We define the path’s **length** as

$$\sum_{i=1}^{\ell} w(v_i, v_{i+1}).$$

A **shortest path** from u to v has the minimum length among all the paths from u to v. Denote by $\text{spdist}(u, v)$ the length of a shortest path from u to v.

If v is unreachable from u, $\text{spdist}(u, v) = \infty$.

Yufei Tao

SSSP on Non-Negative Weights
Single Source Shortest Path (SSSP) with Non-Negative Weights

Let $G = (V, E)$ be a simple directed graph, where function w maps every edge of E to a non-negative value. Given a source vertex s in V, we want to find a shortest path from s to t for every vertex $t \in V$ reachable from s.

The output is a shortest path tree T:

- The vertex set of T is V.
- The root of T is s.
- For each node $u \in V$, the root-to-u path of T is a shortest path from s to u in G.
Example

A shortest path tree for source vertex c:
Edge Relaxation

For every vertex $v \in V$, we will — at all times — maintain a value $dist(v)$ equal to the shortest path length from s to v found so far.

Relaxing an edge (u, v) means:
- If $dist(v) < dist(u) + w(u, v)$, do nothing;
- Otherwise, reduce $dist(v)$ to $dist(u) + w(u, v)$.
Dijkstra’s Algorithm

1. Set $parent(v) \leftarrow \text{nil}$ for all vertices $v \in V$
2. Set $dist(s) \leftarrow 0$ and $dist(v) \leftarrow \infty$ for each vertex $v \in V \setminus \{s\}$
3. Set $S \leftarrow V$
4. Repeat the following until S is empty:
 - Remove from S the vertex u with the smallest $dist(u)$.
 - Relax every outgoing edge (u, v) of u.
 If $dist(v)$ drops after the relaxation, set $parent(v) \leftarrow u$.

Yufei Tao

SSSP on Non-Negative Weights
Example

Suppose that the source vertex is c.

$S = \{a, b, c, d, e, f, g, h, i\}$.
Example

Relax the out-going edges of c.

$$S = \{a, b, d, e, f, g, h, i\}.$$
Example

Relax the outgoing edges of d.

$$S = \{a, b, e, f, g, h, i\}.$$
Example

Relax the out-going edges of g.

\begin{array}{c|c|c}
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & 8 & d \\
b & \infty & \text{nil} \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 10 & c \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\end{array}

$S = \{a, b, e, f, h, i\}$.
Example

Relax the out-going edges of i.

![Graph with vertex a, b, c, d, e, f, g, h, i and edges with weights 1, 2, 5, 2, 3, 1, 1, 1, 10, 6, 3, 2, 10, 5, 3, 4.]

<table>
<thead>
<tr>
<th>vertex v</th>
<th>$\text{dist}(v)$</th>
<th>$\text{parent}(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>∞</td>
<td>nil</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>nil</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>10</td>
<td>c</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>h</td>
<td>∞</td>
<td>nil</td>
</tr>
<tr>
<td>i</td>
<td>4</td>
<td>g</td>
</tr>
</tbody>
</table>

$S = \{a, b, e, f, h\}$.
Example

Relax the out-going edges of f.

$S = \{ a, b, e, h \}$.

\[
\begin{array}{|c|c|c|}
\hline
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & 8 & d \\
b & \infty & \text{nil} \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 6 & f \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\hline
\end{array}
\]
Example

Relax the out-going edges of \(e \).

\[
\begin{array}{c|c|c}
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & 8 & d \\
b & \infty & \text{nil} \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 6 & f \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\end{array}
\]

\(S = \{a, b, h\} \).
Example

Relax the out-going edges of a.

\[
\begin{array}{c|c|c}
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & 8 & d \\
b & 9 & a \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 6 & f \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\end{array}
\]

$S = \{b, h\}$.
Example

Relax the out-going edges of b.

$S = \{h\}$.

<table>
<thead>
<tr>
<th>vertex v</th>
<th>$\text{dist}(v)$</th>
<th>$\text{parent}(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>9</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>nil</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>h</td>
<td>∞</td>
<td>nil</td>
</tr>
<tr>
<td>i</td>
<td>4</td>
<td>g</td>
</tr>
</tbody>
</table>
Example

Relax the out-going edges of h.

$S = \{\}$. All the shortest path distances are now final.
Constructing the Shortest Path Tree

For every vertex \(v \), if \(u = parent(v) \) is not nil, then make \(v \) a child of \(u \).
You should be able to implement Dijkstra’s algorithm to make sure that it runs in $O((|V| + |E|) \cdot \log |V|)$ time.

- Using advanced (graduate-level) data structures, we can reduce the time to $O(|V| \log |V| + |E|)$.

Dijkstra’s algorithm does not work if edges can take negative weights.