Review: Depth First Search

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
This lecture will review the **depth first search** (DFS) algorithm (covered in CSCI2100). The algorithm is deceptively simple and has numerous non-trivial properties.

Our focus will be the **white path theorem**, which we will need to find **strongly connected components** in the next lecture.
DFS

Let $G = (V, E)$ be a directed simple graph.

In the beginning, color all vertices in the graph **white** and create an empty DFS tree T.

Create a stack S. Pick an arbitrary vertex v. Push v into S, and color it **gray** (which means “in the stack”). Make v the root of T.
Example

Suppose that we start from a.

$S = (a)$.

DFS tree

$S = (a)$.

Yufei Tao

Review: Depth First Search
Repeat the following until S is empty.

1. Let v be the vertex that currently tops the stack S (do not remove v from S).
2. Does v still have a white out-neighbor?
 2.1 If yes: let it be u.
 - Push u into S and color u gray.
 - Make u a child of v in the DFS-tree T.
 2.2 If no: pop v from S and color v black (meaning v is done).

If there are still white vertices, repeat the above by restarting from an arbitrary white vertex v', creating a new DFS-tree rooted at v'.

DFS finishes in $O(|V| + |E|)$ time.
Running Example

Top of stack: a, which has white out-neighbors b, d. Suppose we access b first. Push b into S.

$S = (a, b)$.
Running Example

After pushing c into S:

$$S = (a, b, c).$$
Running Example

Now \(c\) tops the stack. It has white out-neighbors \(d\) and \(e\). Suppose we visit \(d\) first. Push \(d\) into \(S\).

\[
S = (a, b, c, d).
\]
Running Example

After pushing g into S:

$$S = (a, b, c, d, g).$$
Running Example

Suppose we visit white out-neighbor f of g first. Push f into S

\[S = (a, b, c, d, g, f). \]
Running Example

After pushing e into S:

$S = (a, b, c, d, g, f, e)$.
Running Example

e has no white out-neighbors. So pop it from S, and color it black. Similarly, f has no white out-neighbors. Pop it from S, and color it black.

$$S = (a, b, c, d, g).$$
Now g tops the stack again. It still has a white out-neighbor i. So, push i into S.

\[S = (a, b, c, d, g, i). \]
Running Example

After popping i, g, d, c, b, a:

$S = ()$.

Yufei Tao
Review: Depth First Search
Now there is still a white vertex h. So we perform another DFS starting from h.

$$S = (h).$$
Running Example

Pop h. The end.

$S = ()$.

Note that we have created a **DFS-forest**, which consists of 2 DFS-trees.
Theorem: Let u be a vertex in G. Consider the moment when u enters the stack. Then, a vertex v will become a proper descendant of u in the DFS-forest **if and only** if at the current moment we can go from u to v by traveling on white vertices only (i.e., there is a white path from u to v).
Example

Consider the moment in our previous example when \(g \) just entered the stack. \(S = (a, b, c, d, g) \).

We can see that \(g \) can reach \(f, e, \) and \(i \) by hopping on only white vertices. Therefore, \(f, e, \) and \(i \) are proper descendants of \(g \) in the DFS-forest; and \(g \) has no other descendants.