Dynamic Programming 4: Longest Common Subsequence

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
A string s is a **subsequence** of another string t if either $s = t$ or we can convert t to s by deleting characters.

Example: $t = ABCDEF$

The following are subsequences of t: ABD, ACDF, and ABCDEF. The following are not: ACB, ACG, and BDFE.
The Longest Common Subsequence Problem

Given two strings x and y, find a common subsequence z of x and y with the maximum length.

We will refer to z as a **longest common subsequence** (LCS) of x and y.

Example: If $x = ABCBDAB$ and $y = BDCABA$, then BCBA is an LCS of x and y, so is BCAB.

If $x = \emptyset$ (empty string) and $y = BDCABA$, their (only) LCS is \emptyset.
The key to solving the problem is to identify its underlying recursive structure.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.
\(n = \) the length of \(x \); \(m = \) the length of \(y \)

Theorem: Let \(z \) be any LCS of \(x \) and \(y \), and \(k \) the length of \(z \). Then:

1. If \(x[n] = y[m] \)
 then \(z[k] = x[n] \) (hence, also \(= y[m] \)) and
 \(z[1 : k - 1] \) is an LCS of \(x[1 : n - 1] \) and \(y[1 : m - 1] \).

2. If \(x[n] \neq y[n] \), then \textbf{at least} one of the following holds:
 - \(z \) is an LCS of \(x[1 : n - 1] \) and \(y \)
 - \(z \) is an LCS of \(x \) and \(y[1 : m - 1] \).

This is the recursive structure of the problem.
Example:

- Suppose $x = \text{BCBDA}$ and $y = \text{BDCABA}$, which have an LCS $z = \text{BCBA}$. By Statement 1 (of the theorem), BCB must be an LCS of BCBD and BDCAB.

- Suppose $x = \text{ABCBDAB}$ and $y = \text{BDCABA}$, which have an LCS $z = \text{BCBA}$. By Statement 2, at least one of the following is true:
 - BCBA is an LCS of ABCBDAB and BDCABA;
 - BCBA is an LCS of ABCBDAB and BDCAB.
Proof of Statement 1:

We first prove $z[k] = x[n]$. Suppose that this is not true. Then, z must be a common subsequence of $x[1 : n - 1]$ and $y[1 : m - 1]$. But then $z' \circ x[n]$ is a length-$(k + 1)$ common subsequence of x and y, contradicting the fact that z is an LCS of x and y.

Next, we prove $z[1 : k - 1]$ is an LCS of $x[1 : n - 1]$ and $y[1 : m - 1]$. Suppose that this is not true. Thus, $x[1 : n - 1]$ and $y[1 : m - 1]$ have an LCS z' with length at least k. However, $z' \circ x[n]$ will be a length-$(k + 1)$ common subsequence of x and y, contradicting the definition of z. □

Remark: \circ means string concatenation. For example, $ABC \circ DEF = ABCDEF$.
Proof of Statement 2:

Because $x[n] \neq y[m]$, at least one of the following is false:

- $z[k] = x[n]$
- $z[k] = y[m]$.

Consider first $z[k] \neq x[n]$. We argue that z must be an LCS of $x[1 : n - 1]$ and y. First, z must be a common subsequence of $x[1 : n - 1]$ and y (think: how is this related to $z[k] \neq x[n]$)? Assume, on the contrary, that z is not their LCS. Thus, $x[1 : n - 1]$ and y have an LCS z' of length at least $k + 1$. This means that x and y have a common subsequence of length $k + 1$, contradicting the fact that z is an LCS of x and y.

A symmetric argument proves the statement when $z[k] \neq y[m]$.

\[\Box\]
Define $x[1 : 0] = y[1 : 0] = \emptyset$ (empty string).

For any $i \in [0, n]$ and $j \in [0, m]$, define

$$opt(i, j) = \text{the LCS length of } x[1 : i] \text{ and } y[1 : j].$$

Note that $opt(n, m)$ is the LCS length of x and y.

The theorem tells us

$$opt(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
opt(i - 1, j - 1) + 1 & \text{if } i, j > 0 \text{ and } x[i] = y[j] \\
\max\{opt(i, j - 1), opt(i - 1, j)\} & \text{if } i, j > 0 \text{ and } x[i] \neq y[j]
\end{cases}$$

We can compute $opt(n, m)$ in $O(nm)$ time by dynamic programming (last lecture).
Wait! We still need to **generate** an LCS of x and y.

This can be done by slightly modifying the dynamic programming algorithm without increasing the time complexity. Details are left as a regular exercise.