A string s is a **subsequence** of another string t if either $s = t$ or we can convert t to s by deleting characters.

Example: $t = \text{ABCDEF}$

The following are subsequences of t: ABD, ACDF, and ABCDEF. The following are not: ACB, ACG, and BDFE.
The Longest Common Subsequence Problem

Given two strings \(x \) and \(y \), find a common subsequence \(z \) of \(x \) and \(y \) with the maximum length.

We will refer to \(z \) as a **longest common subsequence** (LCS) of \(x \) and \(y \).

Example: If \(x = \text{ABCBDAB} \) and \(y = \text{BDCABA} \), then \(\text{BCBA} \) is an LCS of \(x \) and \(y \), so is \(\text{BCAB} \).

If \(x = \emptyset \) (empty string) and \(y = \text{BDCABA} \), their (only) LCS is \(\emptyset \).
The key to solving the problem is to identify its underlying **recursive structure**.

Specifically, how the original problem is related to subproblems.

The recursive structure will then imply a dyn. programming algorithm.
\(n = \) the length of \(x \); \(m = \) the length of \(y \)

Theorem: Let \(z \) be any LCS of \(x \) and \(y \), and \(k \) the length of \(z \). Then:

1. If \(x[n] = y[m] \)
 then \(z[k] = x[n] \) (hence, also \(= y[m] \)) and \(z[1 : k - 1] \) is an LCS of \(x[1 : n - 1] \) and \(y[1 : m - 1] \).
2. If \(x[n] \neq y[n] \), then at least one of the following holds:
 - \(z \) is an LCS of \(x[1 : n - 1] \) and \(y \)
 - \(z \) is an LCS of \(x \) and \(y[1 : m - 1] \).

This is the recursive structure of the problem.
Example:

- Suppose $x = \text{BCBDA}$ and $y = \text{BDCABA}$, which have an LCS $z = \text{BCBA}$. By Statement 1 (of the theorem), BCB must be an LCS of BCBD and BDCAB.

- Suppose $x = \text{ABCBDAB}$ and $y = \text{BDCABA}$, which have an LCS $z = \text{BCBA}$. By Statement 2, \textbf{at least one} of the following is true:
 - BCBA is an LCS of ABCBDAB and BDCABA;
 - BCBA is an LCS of ABCBDAB and BDCAB.
Proof of Statement 1:

Assume that \(z[1 : k - 1] \) is not an LCS of \(x[1 : n - 1] \) and \(y[1 : m - 1] \). Thus, \(x[1 : n - 1] \) and \(y[1 : m - 1] \) have an LCS \(z' \) with length at least \(k \).

However, \(z' \circ x[n] \) will be a length-(\(k + 1 \)) common subsequence of \(x \) and \(y \), contradicting the fact that \(z \) is an LCS of \(x \) and \(y \).

Remark: \(\circ \) means string concatenation. For example, \(ABC \circ DEF = ABCDEF \).
Proof of Statement 2:

Because \(x[n] \neq y[m] \), at least one of the following is false:

- \(z[k] = x[n] \)
- \(z[k] = y[m] \).

Consider first \(z[k] \neq x[n] \). We argue that \(z \) must be an LCS of \(x[1 : n-1] \) and \(y \). First, \(z \) must be a common subsequence of \(x[1 : n-1] \) and \(y \) (think: how is this related to \(z[k] \neq x[n] \))? Assume, on the contrary, that \(z \) is not their LCS. Thus, \(x[1 : n-1] \) and \(y \) have an LCS \(z' \) of length at least \(k + 1 \). This means that \(x \) and \(y \) have a common subsequence of length \(k + 1 \), contradicting the fact that \(z \) is an LCS of \(x \) and \(y \).

A symmetric argument proves the statement when \(z[k] \neq y[m] \). \(\square \)
Define $x[1 : 0] = y[1 : 0] = \emptyset$ (empty string).

For any $i \in [0, n]$ and $j \in [0, m]$, define

$$
\text{opt}(i, j) = \text{the LCS length of } x[1 : i] \text{ and } y[1 : j].
$$

Note that $\text{opt}(n, m)$ is the LCS length of x and y.

The theorem tells us

$$
\text{opt}(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\text{opt}(i - 1, j - 1) + 1 & \text{if } i, j > 0 \text{ and } x[i] = y[j] \\
\max\{\text{opt}(i, j - 1), \text{opt}(i - 1, j)\} & \text{if } i, j > 0 \text{ and } x[i] \neq y[j]
\end{cases}
$$

We can compute $\text{opt}(n, m)$ in $O(nm)$ time by dynamic programming (last lecture).
Wait! We still need to generate an LCS of x and y.

This can be done by slightly modifying the dynamic programming algorithm without increasing the time complexity. Details are left as a regular exercise.