Greedy 3: Huffman Codes

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Given an alphabet Σ (like the English alphabet), an **encoding** is a function that maps each letter in Σ to a binary string, called a **codeword**.

For example, suppose $\Sigma = \{a, b, c, d, e, f\}$ and consider the encoding where $a = 000$, $b = 001$, $c = 010$, $d = 011$, $e = 100$, and $f = 101$. The word “bed” can be encoded as 001100011.
We can reduce the length of encoding if letters’ usage frequencies are known.

Suppose that, in a document, 10% of the letters are a, namely, the letter has frequency 10%. Similarly, suppose that letters b, c, d, e, and f have frequencies 20%, 13%, 9%, 40%, and 8%, respectively.

If we use the encoding $a = 100$, $b = 111$, $c = 101$, $d = 1101$, $e = 0$, $f = 1100$, the average number of bits per letter is:

$$3 \cdot 0.1 + 3 \cdot 0.2 + 3 \cdot 0.13 + 4 \cdot 0.09 + 1 \cdot 0.4 + 4 \cdot 0.08 = 2.37.$$

This is better than using 3 bits per letter.
What is wrong with the encoding $e = 0, b = 1, c = 00, a = 01, d = 10, f = 11$? **Ambiguity in decoding!** For example, does the string 10 mean “be” or “d”?

To allow decoding, we enforce the following constraint:

No letter’s codeword should be a prefix of another letter’s codeword.

An encoding satisfying the constraint is said to be a **prefix code**.

Example: The encoding $a = 100, b = 111, c = 101, d = 1101, e = 0, f = 1100$ is a prefix code. Just for fun, trying decoding the following binary string.

$$10011010100110011011001101$$
The Prefix Coding Problem

For each letter $\sigma \in \Sigma$, let $freq(\sigma)$ denote the frequency of σ. Also, denote by $len(\sigma)$ the number of bits in the codeword of σ.

Given an encoding, its **average length** is

$$\sum_{\sigma \in \Sigma} freq(\sigma) \cdot len(\sigma).$$

The objective of the **prefix coding problem** is to find a prefix code for Σ with the shortest average length.
A code tree on \(\Sigma \) as a binary tree \(T \) satisfying:

- Every leaf node of \(T \) corresponds to a unique letter in \(\Sigma \); every letter in \(\Sigma \) corresponds to a unique leaf node in \(T \).
- For every internal node of \(T \), its left edge (if exists) is labeled 0, and its right edge (if exists) is labeled 1.

\(T \) generates a prefix code as follows:

- For each letter \(\sigma \in \Sigma \), generate its codeword by concatenating the bit labels of the edges on the path from the root of \(T \) to \(\sigma \).

Think: Why must the encoding be a prefix code?
Lemma: Every prefix code is generated by a code tree.

The proof will be left as a regular exercise.

Example: For our encoding $a = 100$, $b = 111$, $c = 101$, $d = 1101$, $e = 0$, and $f = 1100$, the code tree is:

![Code Tree Diagram](image)
Let T be the code tree generating a prefix code. Given a letter σ of Σ, its code word length $\text{len}(\sigma)$ is the level of its leaf node $\text{level}(\sigma)$ in T (i.e., the number of edges from the root to node σ).

Example:

The levels of e, a, c, f, d, and b are 1, 3, 3, 4, 4, and 3, respectively.

Hence:

$$\text{avg length} = \sum_{\sigma \in \Sigma} \text{freq}(\sigma) \cdot \text{len}(\sigma) = \sum_{\sigma \in \Sigma} \text{freq}(\sigma) \cdot \text{level}(\sigma) = \text{avg height of } T$$

Goal (rephrased): Find a code tree on Σ with the smallest average height.
Next, we will see a simple algorithm for solving the prefix coding problem.

Let \(n = |\Sigma| \). In the beginning, create a set \(S \) of \(n \) stand-alone leaves, each corresponding to a distinct letter in \(\Sigma \). If leaf \(z \) is for letter \(\sigma \), define the **frequency** of \(z \) to be \(\text{freq}(\sigma) \).
Huffman’s Algorithm

Then, repeat until \(|S| = 1|:

1. Remove from \(S\) two nodes \(u_1\) and \(u_2\) with the smallest frequencies.
2. Create a node \(v\) with \(u_1\) and \(u_2\) as the children. Set the frequency of \(v\) to be the frequency sum of \(u_1\) and \(u_2\).
3. Add \(v\) to \(S\).

When \(|S| = 1|, we have obtained a code tree. The prefix code derived from this tree is a Huffman code.
Example

Consider our earlier example where $a, b, c, d, e,$ and f have frequencies 0.1, 0.2, 0.13, 0.09, 0.4, and 0.08, respectively.

Initially, S has 6 nodes:

\[
\begin{array}{cccccc}
10 & 20 & 13 & 9 & 40 & 8 \\
a & b & c & d & e & f
\end{array}
\]

The number in each circle represents frequency (e.g., 10 means 10%).
Example

Merge the two nodes with the smallest frequencies 8 and 9. Now S has 5 nodes $\{a, b, c, e, u_1\}$:
Example

Merge the two nodes with the smallest frequencies 10 and 13. Now S has 4 nodes $\{b, e, u_1, u_2\}$:
Example

Merge the two nodes with the smallest frequencies 17 and 20. Now S has 3 nodes $\{e, u_2, u_3\}$:
Example

Merge the two nodes with the smallest frequencies 23 and 37. Now S has 2 nodes $\{e, u_4\}$:
Example

Merge the two remaining nodes. Now S has a single node left.

This is the final code tree.
It is easy to implement the algorithm in $O(n \log n)$ time (exercise).

Next, we prove that the algorithm gives an optimal code tree, i.e., one that minimizes the average height.
Property 1

Lemma: In an optimal code tree, every internal node of T must have two children.

The proof is left as a regular exercise.
Lemma: Let σ_1 and σ_2 be two letters in Σ with the lowest frequencies. There exists an optimal code tree where σ_1 and σ_2 have the same parent.

Proof: W.l.o.g., assume $freq(\sigma_1) \leq freq(\sigma_2)$. Let T be any optimal code tree. Let p be an arbitrary internal node with the largest level in T. By Property 1, p must have two leaves. Let x and y be letters corresponding to those leaves such that $freq(x) \leq freq(y)$. Swap σ_1 with x and σ_2 with y, which gives a new code tree T'. Note that both σ_1 and σ_2 are children of p in T'.

Convince yourself that the average length of T' is at most that of T. Hence, T' is optimal as well. \qed
Theorem: Huffman’s algorithm produces an optimal prefix code.

Proof: We will prove by induction on the size n of the alphabet Σ.

Base Case: $n = 2$. In this case, the algorithm encodes one letter with 0, and the other with 1, which is clearly optimal.

General Case: Assuming the theorem’s correctness for $n = k - 1$ where $k \geq 3$, next we show that it also holds for $n = k$.
Proof (cont.): Let σ_1 and σ_2 be two letters in Σ with the lowest frequencies.

By Property 2, there is an optimal code tree T on Σ where leaves σ_1 and σ_2 are the children of the same parent p.

Let T_{huff} be the code tree returned by Huffman’s algorithm on Σ. Convince yourself that σ_1 and σ_2 have the same parent q in T_{huff}.
Proof (cont.): Construct a new alphabet Σ' from Σ by removing σ_1 and σ_2, and adding a letter σ^* with frequency $\text{freq}(\sigma_1) + \text{freq}(\sigma_2)$.

Let T' be the tree obtained by removing leaves σ_1 and σ_2 from T (thus making p a leaf). T' is a code tree on Σ' where p corresponds to σ^*.

Observe:

$$\text{avg height of } T = \text{avg height of } T' + \text{freq}(\sigma_1) + \text{freq}(\sigma_2).$$

Let T'_{huff} be the tree obtained by removing leaves σ_1 and σ_2 from T_{huff} (thus making q a leaf). T'_{huff} is a code tree on Σ' where q corresponds to σ^*.

$$\text{avg height of } T_{huff} = \text{avg height of } T'_{huff} + \text{freq}(\sigma_1) + \text{freq}(\sigma_2).$$
Proof (cont.): T_{huff}' is the output of Huffman’s algorithm on Σ'. By our inductive assumption, T_{huff}' is optimal on Σ'. Thus:

$$\text{avg height of } T_{huff}' \leq \text{avg height of } T'$$

Hence:

$$\text{avg height of } T_{huff} \leq \text{avg height of } T.$$