Divide and Conquer

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In this lecture, we will discuss the divide and conquer technique for designing algorithms with strong performance guarantees. Our discussion will be based on the following problems:

1. Sorting (a review of merge sort)
2. Counting inversions
3. Dominance counting
4. Matrix multiplication
Principle of divide and conquer:

Divide a problem into sub-problems, solve the sub-problems by recursion, and derive the final answer from the sub-problems’ outputs.
Sorting
Problem: Given an array A of n distinct integers, produce another array where the same integers have been arranged in ascending order.

- **Divide:** Let A_1 the array containing the first $\lceil n/2 \rceil$ elements of A, and A_2 be the array containing the other elements of A. Sort A_1 and A_2 recursively.

- **Conquer:** Merge the two sorted arrays A_1 and A_2 in ascending order. This can be done in $O(n)$ time.

This is the merge sort algorithm.
Sorting

Running Time: Let \(f(n) \) denote the worst-case cost of the algorithm on an array of size \(n \). Then:

\[
f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n)
\]

which gives \(f(n) = O(n \log n) \).
Counting Inversions
Counting Inversions

Let: \(A \) = an array of \(n \) distinct integers.

An inversion is a pair of \((i, j)\) such that

- \(1 \leq i < j \leq n \), and

Example: Consider \(A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6) \).
Then \((1, 2)\) is an inversion because \(A[1] = 10 > A[2] = 3 \). So are \((1, 3), (3, 4), (4, 5), \) and so on.
There are in total 29 inversions.

Think: How many inversions can there be in the worst case?

Answer: \(\binom{n}{2} = \Theta(n^2) \).
Counting Inversions

Problem: Given an array A of n distinct integers, count the number of inversions.

We will do in the class: $O(n \log^2 n)$ time.
You will do as an exercise: $O(n \log n)$ time.
Counting Inversions

- **Divide:** Let A_1 be the array containing the first $\lceil n/2 \rceil$ elements of A, and A_2 be the array containing the other elements of A. Solve the “counting inversions” problem recursively on A_1 and A_2, respectively. By doing so, we have already obtained the number m_1 of inversions in A_1, and similarly, the number m_2 for A_2.

- **Conquer:** It remains to count the number of crossing inversions (i, j) where $i \in A_1$ and $j \in A_2$.

Counting Inversions

$A_1 = \text{the array containing the first } \lceil n/2 \rceil \text{ elements of } A$

$A_2 = \text{the array containing the other elements of } A.$

Sort A_1 and A_2.

For each element $e \in A_1$, count how many crossing inversions e produces using binary search.

Example (cont.): $A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6)$.

$A_1 = (2, 3, 8, 9, 10), \ A_2 = (1, 4, 5, 6, 7)$

Element 2 produces 1 crossing inversion
Element 3 produces 1, too.
Elements 8, 9, and 10 each produce 5 crossing inversions.

Think: How to obtain each count with binary search?

In total, $n/2$ binary searches are performed, which takes $O(n \log n)$ time.
Counting Inversions

Running Time: Let $f(n)$ denote the worst-case cost of the algorithm on an array of size n. Then:

$$f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n \log n)$$

which gives $f(n) = O(n \log^2 n)$.
Dominance Counting
Denote by \mathbb{Z} the set of integers. Given a point p in two-dimensional space \mathbb{Z}^2, denote by $p[1]$ and $p[2]$ its x- and y-coordinate, respectively.

Given two distinct points p and q, we say that q dominates p if $p[1] \leq q[1]$ and $p[2] \leq q[2]$; see the figure below:

\begin{center}
\bullet q
\end{center}

\begin{center}
\bullet p
\end{center}
Let P be a set of n points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in P that are dominated by p.

Example:

We should output: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2), (p_5, 2), (p_6, 5), (p_7, 2), (p_8, 0)$.
Dominance Counting

Let P be a set of n points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in P that are dominated by p.

We will do in the class: $O(n \log^2 n)$ time.
You will do as an exercise: $O(n \log n)$ time.
Dominance Counting

Divide: Find a vertical line ℓ such that P has $\lceil n/2 \rceil$ points on each side of the line.

Example:

![Diagram showing points $p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8$ with a vertical line ℓ.]

Think: How to find such ℓ in $O(n \log n)$ time? How about $O(n)$ time?
Dominance Counting

Divide:

\[P_1 = \text{the set of points of } P \text{ on the left of } \ell \]
\[P_2 = \text{the set of points of } P \text{ on the right of } \ell \]

Example:

\[P_1 = \{ p_1, p_2, p_3, p_4 \} \]
\[P_2 = \{ p_5, p_6, p_7, p_8 \} . \]
Dominance Counting

Divide:
Solve the dominance counting problem on P_1 and P_2 separately.

Example:

On P_1, we have obtained: $(p_1, 0), (p_2, 1), (p_3, 0), (p_4, 2)$.

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.

The counts obtained for the points in P_1 are final (think: why?).
Dominance Counting

Conquer:
It remains to count, for each point $p_2 \in P_2$, how many points in P_1 it dominates.

Example:

On P_2, we have obtained: $(p_5, 0), (p_6, 1), (p_7, 0), (p_8, 0)$.

Regarding p_5, for example, we still need to find out that it dominates 2 points from P_1.

The x-coordinates do not matter any more!
Dominance Counting

Conquer:

Sort P_1 by y-coordinate.
Then, for each point $p_2 \in P_2$, we can obtain the number points in P_1 dominated by p_2 using binary search.

Example:

P_1 in ascending of y-coordinate: p_3, p_1, p_4, p_2.

How to perform binary search to obtain the fact that p_5 dominates 2 points in P_1?

- Search using the y-coordinate of p_5.
Dominance Counting

Analysis:

Let $f(n)$ be the worst-case running time of the algorithm on n points. Then:

$$f(n) \leq 2f(\lceil n/2 \rceil) + O(n \log n)$$

which solves to $f(n) = O(n \log^2 n)$.
Matrix Multiplication
Problem: Given two $n \times n$ matrices A and B, compute their product AB.

We store an $n \times n$ matrix with an array of length n^2 in “row-major” order.

Example:
\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\] is stored as $(1, 2, 3, 4)$.

Note that any $A[i,j]$ — the element of A at the i-th row and j-th column — can be accessed in $O(1)$ time.

Trivial: $O(n^3)$ time

We will do in the class: $O(n^{2.81})$ time for n being a power of 2

You will do as an exercise: $O(n^{2.81})$ time for any n. ```
Matrix Multiplication

Warm Up: Suppose we want to compute \[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
e & f \\
g & h
\end{bmatrix}.
\] How many multiplication operations do we need to perform?

Trivial: 8.

Non-trivial: 7.

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
e & f \\
g & h
\end{bmatrix} = \begin{bmatrix}
p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\
p_3 + p_4 & p_1 + p_5 - p_3 - p_7
\end{bmatrix}
\]

where

\[
\begin{align*}
p_1 &= a(f - h) \\
p_2 &= (a + b)h \\
p_3 &= (c + d)e \\
p_4 &= d(g - e) \\
p_5 &= (a + d)(e + h) \\
p_6 &= (b - d)(g + h) \\
p_7 &= (a - c)(e + f)
\end{align*}
\]
Matrix Multiplication (Strassen’s Algorithm)

Recall that the input A and B are order-n (i.e., $n \times n$) matrices. Assume for simplicity that n is a power of 2. Divide each of A and B into 4 submatrices of order $n/2$:

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}
$$

It is easy to verify:

$$
AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}
$$

How many order-$(n/2)$ matrix multiplications do we need?

Trivial: 8.

Non-trivial: 7 — see the next slide.
Matrix Multiplication

\[
\begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
 p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\
 p_3 + p_4 & p_1 + p_5 - p_3 - p_7
\end{bmatrix}
\]

\begin{align*}
p_1 &= A_{11}(B_{12} - B_{22}) \\
p_2 &= (A_{11} + A_{12})B_{22} \\
p_3 &= (A_{21} + A_{22})B_{11} \\
p_4 &= A_{22}(B_{21} - B_{11}) \\
p_5 &= (A_{11} + A_{22})(B_{11} + B_{22}) \\
p_6 &= (A_{12} - A_{22})(B_{21} + B_{22}) \\
p_7 &= (A_{11} - A_{21})(B_{11} + B_{12})
\end{align*}

If \(f(n) \) is the worst-case time of computing the product of two order-\(n \) matrices, then each of \(p_i \) (\(1 \leq i \leq 7 \)) can be computed in \(f(n/2) + O(n^2) \) time.
Matrix Multiplication

Therefore:

\[f(n) = 7f(n/2) + O(n^2) \]

which solves to \(f(n) = O(n^{\log_2 7}) = O(n^{2.81}) \).