Basic Techniques: Recursion, Repeating, and Geometric Series

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Today we will discuss three basic techniques of algorithm design:

- Recursion
- Repeating (till success)
- Geometric Series.
Recursion
Principle of recursion

When dealing with a subproblem (same problem but with a smaller input), consider it solved, and use the subproblem’s output to continue the algorithm design.
Tower of Hanoi

There are 3 rods A, B, and C.

On rod A, n disks of different sizes are stacked in such a way that no disk of a larger size is above a disk of a smaller size.

The other two rods are empty.

![Diagram of the Tower of Hanoi](attachment:image.png)
Tower of Hanoi

Permitted operation: Move the top-most disk of a rod to another rod.

Constraint: No disk of a larger size can be above a disk of a smaller size.

Goal: Design an algorithm to move all the disks to rod B.
Subproblem: Same problem but with \(n - 1 \) disks.
Consider the subproblem solved (i.e., assume you already have an algorithm for it).

Now, solve the problem with \(n \) disks as follows:
Suppose that our algorithm performs $f(n)$ operations to solve a problem of size n. Clearly, $f(1) = 1$. By recursion, we can write

$$f(n) = 1 + 2 \cdot f(n - 1)$$

Solving this recurrence gives $f(n) = 2^n - 1$.
Use recursion to “redesign” the following algorithms:

- Binary search
- Quick sort
Repeating till Success
The k-Selection Problem: You are given a set S of n integers in an array and an integer $k \in [1, n]$. Find the k-th smallest integer of S.

For example, suppose that $S = (53, 92, 85, 23, 35, 12, 68, 74)$ and $k = 3$. You should output 35.
The **rank** of an integer $v \in S$ is the number of elements in S smaller than or equal to v.

For example, suppose that $S = (53, 92, 85, 23, 35, 12, 68, 74)$. Then, the rank of 53 is 4, and that of 12 is 1.

Easy: The rank of v can be obtained in $O(|S|)$ time.
Consider the following task:

Task: Assume \(n \) to be a multiple of 3. Obtain a subproblem of size at most \(2n/3 \) with exactly the same result as the original problem.

Our goal is to produce a set \(S' \) and an integer \(k' \) such that

- \(|S'| \leq 2n/3 \)
- \(k' \in [1, |S'|] \)
- The element with rank \(k' \) in \(S' \) is the element with rank \(k \) in \(S \).

We will give an algorithm to accomplish the task in \(O(n) \) expected time.
Consider the following algorithm.

1. Take an element $v \in S$ uniformly at random.
2. Divide S into S_1 and S_2 where
 - $S_1 =$ the set of elements in S less than or equal to v;
 - $S_2 =$ the set of elements in S greater than v.
3. If $|S_1| \geq k$, then return $S' = S_1$ and $k' = k$;
 else return $S' = S_2$ and $k' = k - |S_1|$.

The algorithm succeeds if $|S'| \leq 2n/3$, or fails otherwise.

Repeat the algorithm until it succeeds.
Lemma: The algorithm succeeds with probability at least $1/3$.

Proof: The algorithm always succeeds when the rank of v falls in $\left[\frac{n}{3}, \frac{2}{3}n\right]$ (think: why?). This happens with a probability at least $1/3$, by the fact that v is taken from S uniformly at random. □

In general, if an algorithm succeeds with a probability at least $c > 0$, then the number of repeats needed for the algorithm to succeed for the first time is at most $1/c$ in expectation.

We expect to repeat the algorithm at most 3 times before it succeeds. This implies that the expected running time is $O(n)$ (think: why?).
Geometric Series
A **geometric sequence** is an infinite sequence of the form

\[n, cn, c^2 n, c^3 n, \ldots \]

where \(n \) is a positive number and \(c \) is a constant satisfying \(0 < c < 1 \).

It holds in general that

\[
\sum_{i=0}^{\infty} c^i n = \frac{n}{1 - c} = O(n).
\]

The summation \(\sum_{i=0}^{\infty} c^i n \) is called a **geometric series**.

Geometric series are extremely important for algorithm design.
Consider again:

The k-Selection Problem: You are given a set S of n integers in an array and an integer $k \in [1, n]$. Find the k-th smallest integer of S.
Using the repeating technique, now you should be able to convert the problem to a subproblem with size at most \(\lceil 2n/3 \rceil \) in \(O(n) \) expected time.

Now, apply the recursion technique. We have already obtained a (complete) algorithm solving the \(k \)-selection problem!

Think: How is this related to geometric series?
Let \(f(n) \) be the expected running time of our algorithm on an array of size \(n \).

We know:

\[
\begin{align*}
 f(1) & \leq O(1) \\
 f(n) & \leq O(n) + f(\lceil 2n/3 \rceil).
\end{align*}
\]

Solving the recurrence gives \(f(n) = O(n) \).