Problem 1. Let \(x \) be a string of length \(n \), and \(y \) a string of length \(m \). Define \(\text{opt}(i,j) \) to be the length of an LCS of \(x[1:i] \) and \(y[1:j] \) for \(i \in [0,n] \) and \(j \in [0,m] \). In the lecture, we already discussed how to calculate \(\text{opt}(i,j) \) for all possible \((i,j)\) pairs. Based on that discussion, explain an algorithm that can output an LCS of \(x \) and \(y \) in \(O(nm) \) time.

Solution. Recall:

\[
\text{opt}(i,j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\text{opt}(i-1, j-1) + 1 & \text{if } i, j > 0 \text{ and } x[i] = y[j] \\
\max\{\text{opt}(i,j-1), \text{opt}(i-1,j)\} & \text{if } i, j > 0 \text{ and } x[i] \neq y[j].
\end{cases}
\]

We will now apply the “piggyback technique” discussed in the lecture to generate an LCS. For this purpose, let us define

\[
\text{bestSub}(i,j) = \begin{cases}
\text{nil} & \text{if } i = 0 \text{ or } j = 0 \\
\text{nil} & \text{if } i, j > 0 \text{ and } x[i] = y[j] \\
\text{shrink } y & \text{if } i, j > 0, x[i] \neq y[j], \text{ and } \text{opt}(i-1,j) \geq \text{opt}(i,j-1) \\
\text{shrink } x & \text{if } i, j > 0, x[i] \neq y[j], \text{ and } \text{opt}(i-1,j) < \text{opt}(i,j-1)
\end{cases}
\]

After computing \(\text{opt}(i,j) \) for all \((i,j)\) pairs, we can compute each \(\text{bestSub}(i,j) \) in constant time. The total time is \(O(nm) \).

We can now construct an LCS \(z \) of \(x \) and \(y \) as follows. First, if \(x \) or \(y \) is the empty string, set \(z \) to the empty string. Second, if \(x[n] = y[m] \), recursively obtain an LCS \(z' \) of \(x[1:n-1] \) and \(y[1:m-1] \) and then set \(z = z' \circ x[n] \), where \(\circ \) means concatenation. Finally, if \(x[n] \neq y[m] \), we act differently according to \(\text{bestSub}(n,m) \):

- If it is “shrink \(x \)”, we recursively obtain an LCS \(z' \) of \(x[1:n-1] \) and \(y \) and then set \(z = z' \).
- If it is “shrink \(y \)”, we recursively obtain an LCS \(z' \) of \(x \) and \(y[1:m-1] \) and then set \(z = z' \).

Problem 2 (Matrix-Chain Multiplication). The goal in this problem is to calculate \(A_1A_2...A_n \), where \(A_i \) is an \(a_i \times b_i \) matrix for \(i \in [1,n] \). This implies that \(b_{i-1} = a_i \) for \(i \in [2,n] \), and the final result is an \(a_1 \times b_1 \) matrix. You are given an algorithm \(\mathcal{A} \) that, given an \(a \times b \) matrix \(A \) and a \(b \times c \) matrix \(B \), can calculate \(AB \) in \(O(abc) \) time. To calculate \(A_1A_2...A_n \), you can apply parenthesization, namely, convert the expression to \((A_1...A_i)(A_{i+1}...A_n)\) for some \(i \in [1,n-1] \), and then parenthesize each of \(A_1...A_i \) and \(A_{i+1}...A_n \) recursively. A fully parenthesized product is

- either a single matrix
- the product of two fully parenthesized products.

For example, if \(n = 4 \), then \((A_1A_2)(A_3A_4)\) and \(((A_1A_2)A_3)A_4\) are fully parenthesized, but \((A_1)(A_2(A_3A_4))\) is not. Each fully parenthesized product has a computation cost under \(\mathcal{A} \); e.g., given \((A_1A_2)(A_3A_4)\), you first calculate \(B_1 = A_1A_2 \) and \(B_2 = A_3A_4 \), and then calculate \(B_1B_2 \), all
using \(A \). The cost of the fully parenthesized product is the total cost of the three pairwise matrix multiplications.

Design an algorithm to find in \(O(n^3) \) time a fully parenthesized product with the smallest cost.

Solution. Given \(i, j \) satisfying \(1 \leq i \leq j \leq n \), we define \(\text{cost}(i, j) \) to be the smallest achievable cost for calculating \(A_i A_{i+1} \ldots A_j \) with parenthesization. Our objective is to calculate \(\text{cost}(1, n) \).

A key observation is that \(B_1 = A_i \ldots A_k \) is an \(a_i \times b_k \) matrix and \(B_2 = A_{k+1} \ldots A_j \) is an \(a_{k+1} \times b_j \) matrix (where \(b_k = a_{k+1} \)); so it takes \(O(a_i b_k b_j) \) time to compute \(B_1 B_2 \). This means that if we start with the parenthesization \((A_i \ldots A_k)(A_{k+1} \ldots A_j) \), the best achievable cost is \(\text{cost}(i, k) + \text{cost}(k + 1, j) + O(a_i b_k b_j) \). This implies:

\[
\text{cost}(i, j) = \begin{cases}
O(1) & \text{if } i = j \\
\min_{k=i}^{j-1} (\text{cost}(i, k) + \text{cost}(k + 1, j) + O(a_i b_k b_j)) & \text{if } i < j
\end{cases}
\]

Using dynamic programming, we can compute \(\text{cost}(1, n) \) in \(O(n^3) \) time. Using the “piggyback technique”, we can produce an optimal parenthesization in \(O(n^3) \) extra time.

Problem 3 (Longest Ascending Subsequence). Let \(A \) be a sequence of \(n \) distinct integers. A sequence \(B \) of integers is a subsequence of \(A \) if it satisfies one of the following conditions:

- \(A = B \) or
- we can convert \(A \) to \(B \) by repeatedly deleting integers.

The subsequence \(B \) is ascending if its integers are arranged in ascending order. Design an algorithm to find an ascending subsequence of \(A \) with the maximum length. Your algorithm should run in \(O(n^2) \) time. For example, if \(A = (10, 5, 20, 17, 3, 30, 25, 40, 50, 60, 24, 55, 70, 58, 80, 44) \), then a longest ascending sequence is \((10, 20, 30, 40, 50, 60, 70, 80)\).

Solution. We say that \(B \) is an end-aligned ascending subsequence of \(A \) if \(A[n] \) is the last integer in \(B \). In the example given in the problem statement, \((5, 20, 30, 40, 44)\) is an end-aligned ascending subsequence of \(A \), while \((10, 20, 30, 40, 50, 60, 70, 80)\) is not. Given an \(i \in [1, n] \), we use \(\text{len}(i) \) to denote the maximum length of all end-aligned ascending subsequences of \(A[1 : i] \). In our example, \(\text{len}(16) = 5 \) because \((5, 20, 30, 40, 44)\) is an end-aligned ascending subsequence of \(A \), but \(\text{len}(15) = 8 \) because \((10, 20, 30, 40, 50, 60, 70, 80)\) is longest end-aligned ascending subsequence of \(A[1 : 15] \).

Let \(B \) be an (arbitrary) end-aligned ascending subsequence of \(A[1 : i] \), and define \(k \) to be the length of \(B \). There are two possibilities:

- \(k = 1 \). This implies that \(A[j] > A[i] \) for all \(j < i \).
- \(k > 1 \). In this case, let \(j \) be the integer such that \(B[k - 1] = A[j] \). Then, \(B[1 : k - 1] \) must be an end-aligned longest subsequence of \(A[1 : j] \).

Given an \(i \in [1, n] \), define \(S(i) = \{ j \mid j < i \) and \(A[j] < A[i] \} \). The above discussion implies:

\[
\text{len}(i) = 1 + \max_{j \in S(i)} \text{len}(j)
\]

Using dynamic programming, we can compute \(\text{len}(i) \) for all \(i \in [1, n] \) in \(O(n^2) \) time.
The maximum length of all ascending subsequences of \(A \) is

\[
\max_{i=1}^{n} \text{len}(i).
\]

By the “piggyback technique”, we can produce a longest ascending subsequence of \(A \) in \(O(n^2) \) extra time.

**Problem 4*. In this problem, we will revisit a regular exercise discussed before and derive a faster algorithm using dynamic programming.

Let \(A \) be an array of \(n \) integers (\(A \) is not necessarily sorted). Each integer in \(A \) may be positive or negative. Given \(i, j \) satisfying \(1 \leq i \leq j \leq n \), define subarray \(A[i : j] \) as the sequence \((A[i], A[i + 1], ..., A[j])\), and the weight of \(A[i : j] \) as \(A[i] + A[i + 1] + ... + A[j] \). For example, consider \(A = (13, -3, -25, 20, -3, -16, -23, 18) \); \(A[1 : 4] \) has weight 5, while \(A[2 : 4] \) has weight \(-8\). Design an algorithm to find a subarray of \(A \) with the largest weight in \(O(n) \) time.

Remark: We solved the problem using divide-and-conquer in \(O(n \log n) \) time before.

Solution. Given a subarray \(A[i : j] \), we refer to \(j \) as the subarray’s ending position. For each \(k \in [1, n] \), define \(\text{maxwght}(k) \) as the largest weight of all the subarrays whose ending positions are \(k \). It holds that

\[
\text{maxwght}(k) = \begin{cases}
A[k] & \text{if } k = 1 \\
A[k] & \text{if } k > 1 \text{ and } \text{maxwght}(k-1) \leq 0 \\
\text{maxwght}(k-1) + A[k] & \text{if } k > 1 \text{ and } \text{maxwght}(k-1) > 0
\end{cases}
\]

The above obviously holds for \(k = 1 \). Next, we will prove its correctness for \(k > 1 \). Let \(t \in [1, k] \) be an integer that maximizes the weight of \(A[t : k] \).

Consider first the scenario where \(\text{maxwght}(k-1) \leq 0 \). Suppose (for contradiction purposes) that \(t < k \). Then, the weight of \(A[t : k - 1] \), which cannot exceed \(\text{maxwght}(k - 1) \), must be non-positive. Hence, the weight of \(A[t : k] \) is at most \(A[k : k] \). This implies that the weight of \(A[t : k] \) — which is \(\text{maxwght}(k) \) — must be exactly \(A[k] \), establishing the second branch in the definition.

Finally, consider \(\text{maxwght}(k - 1) > 0 \). Let \(t' \) be an integer such that the weight of \(A[t' : k - 1] \) equals \(\text{maxwght}(k - 1) \). As \(A[t' : k] \) has a larger weight than \(A[k : k] \), we can assert that \(t < k \). Next, we argue that \(A[t : k - 1] \) and \(A[t' : k - 1] \) must have the same weight, i.e., \(\text{maxwght}(k - 1) \). Otherwise, \(A[t : k - 1] \) has a lower weight than \(A[t' : k - 1] \), because of which \(A[t : k] \) has a lower weight than \(A[t' : k] \), contradicting the role of \(t \). This establishes the third branch of the definition.

Using dynamic programming, we can calculate \(\text{maxwght}(k) \) for all \(k \in [1, n] \) in \(O(n) \) time. The maximum weight of all the subarrays of \(A \) equals

\[
\max_{k=1}^{n} \text{maxwght}(k)
\]

which can also be obtained in \(O(n) \) time. By resorting to the “piggyback” technique, we can obtain a subarray with the maximum weight in \(O(n) \) extra time.