CSCI3160: Regular Exercise Set 1

Prepared by Yufei Tao

Problem 1. Recall that our RAM model has an atomic operation \(\text{RANDOM}(x, y) \) which, given integers \(x, y \), returns an integer chosen uniformly at random from \([x, y]\). Suppose that you are allowed to call the operation only with \(x = 1 \) and \(y = 128 \). Describe an algorithm to obtain a uniformly random number between 1 and 100. Your algorithm must finish in \(O(1) \) expected time.

Solution. Call \(\text{RANDOM}(1, 128) \) and let \(z \) be its return value. Output \(z \) if it is in \([1, 100]\). Otherwise, repeat from the beginning. We need to call the operator twice in expectation because each time \(z \) has probability \(100/128 \) to fall in the range we want.

Problem 2*. Suppose that we enforce an even harder constraint that you are allowed to call \(\text{RANDOM}(x, y) \) only with \(x = 0 \) and \(y = 1 \). Describe an algorithm to generate a uniformly random number in \([1, n]\) for an arbitrary integer \(n \). Your algorithm must finish in \(O(\log n) \) expected time.

Solution. We first obtain the smallest power of 2 that is at least \(n \). For this purpose, set \(x = 1 \), and double \(x \) each time until \(x \geq n \). The final \(x \) is the power of 2 we are looking for. This takes \(O(\log n) \) time.

Next we will generate a uniformly random number \(y \) in \([1, x]\). For this purpose, call \(\text{RANDOM}(0, 1) \), and let \(z \) be its return. If \(z = 0 \), we proceed to generate a random number in \([1, x/2]\) recursively; otherwise, proceed in \([(x/2) + 1, x]\) recursively. Note that the range of numbers has shrunk by half. The recursion goes on \(O(\log n) \) steps before the range contains only one number, which is the \(y \) we want.

Return \(y \) if \(y \leq n \). Otherwise, repeat by generating another \(y \). Since \(y \geq x/2 \), at most 2 repeats are needed in expectation. The overall time is therefore \(O(\log n) \) in expectation.

Problem 3. Consider the following algorithm to find the greatest common divisor of \(n \) and \(m \) where \(n \leq m \):

\[
\text{algorithm } GCD(n, m) \\
\quad \text{if } n = 0 \text{ then return } m \\
\quad m = m - n \\
\quad \text{if } n \leq m \text{ then return } GCD(n, m) \\
\quad \text{else return } GCD(m, n)
\]

Prove:

1. The time complexity of the algorithm is \(O(m) \).
2. The time complexity of the algorithm is \(\Omega(m) \).

Solution.

Proof of Statement 1: Each time a recursive call to the algorithm is made, \(\max\{n, m\} \) decreases by at least 1. Therefore, there can be at most \(m \) calls overall. Each call clearly takes \(O(1) \) time.

Proof of Statement 2: Fix \(n = 1 \). It is clear that the algorithm must make \(m \) calls.
Problem 4. Consider an input array A that has $n = 120$ elements. Suppose that we choose a number v in A uniformly at random. What is the probability that the rank of v (among all the numbers in A) fall in the range $[35, 78]$?

Solution. $(78 - 35 + 1)/120 = 44/120.$

Problem 5 (A Simpler Randomized Algorithm for k-Selection, but with a More Tedious Analysis). In the k-selection problem, we have an array S of n distinct integers (not necessarily sorted). We would like to find the k-th smallest integer in S where $k \in [1, n]$. Here is another way of solving it using randomization. If $n = 1$, then we simply return the only element in S. For $n > 1$, we proceed as follows:

- Randomly pick an integer v in S, and obtain the rank r of v in S.
- If $r = k$, return v.
- If $r > k$, produce an array S' containing the integers of S that are smaller than v. Recurse by finding the k-th smallest in S'.
- Otherwise, produce an array S' containing the integers of S that are larger than v. Recurse by finding the $(r - k)$-th smallest in S'.

Prove that the above algorithm finishes in $O(n)$ expected time.

Solution. Let $f(n)$ be the expected time of the above algorithm on an input of size n. Clearly, $f(0) = O(1)$ and $f(1) = O(1)$.

Consider $n > 1$. The rank r of v is uniformly distributed in $[1, n]$, namely, for each $i \in [1, n]$, $\Pr[r = i] = 1/n$. When $r = i$, it determines a “left subset” containing the $i - 1$ integers of S smaller than v, and a “right subset” of size $n - i$. In the worst case, we recurse into the larger of the two subsets, namely, we would need to solve the problem on an array of size $\max\{i - 1, n - i\}$.

This gives rise to the following recurrence (for some constant $\alpha > 0$):

$$f(n) \leq \alpha \cdot n + \frac{1}{n} \sum_{i=1}^{n} f(\max\{i - 1, n - i\})$$

$$\leq \alpha \cdot n + \frac{2}{n} \sum_{i=\lceil n/2 \rceil}^{n} f(i - 1)$$

We will prove that the recurrence leads to $f(n) \leq cn$ for some constant $c > 0$. First, this is obviously true for $n \leq 24$ when c is at least a certain constant, say β (when $n = O(1)$, the algorithm definitely finishes in constant time).

Suppose that $f(n) \leq cn$ for $n \leq k - 1$ where $k \geq 24$. Set $t = \lceil k/2 \rceil$. We have:

$$f(k) \leq \alpha \cdot k + \frac{2}{k} \sum_{i=t}^{k} c(i - 1) = \alpha \cdot k + \frac{2c}{k} \sum_{i=t-1}^{k-1} i$$

$$= \alpha \cdot k + \frac{2c}{k} \frac{(k + t - 2)(k - t + 1)}{2} < \alpha \cdot k + \frac{c(k^2 + 3t - t^2)}{k}$$

$$< (\alpha + c)k + 3c - \frac{t^2}{k} \leq (\alpha + c)k + 3c - \frac{(k/2)^2}{k}$$

$$= (\alpha + c)k + 3c - ck/4$$
We need the above to be at most ck, namely:

$$(\alpha + c)k + 3c - ck/4 \leq ck$$

$\Leftrightarrow \alpha k + 3c \leq ck/4$

$\Leftrightarrow \begin{cases}
ck/4 \geq 2\alpha k \\
ck/4 \geq 6c.
\end{cases}$

$\Leftrightarrow \begin{cases}
c \geq 8\alpha \\
k \geq 24.
\end{cases}$

Hence, setting $c = \max\{\beta, 8\alpha\}$ completes the proof.