Binary Heaps in Dynamic Arrays

CSCI 2100 Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

1/21

A 目 > A 目 > A

- An array-based implementation of the binary heap.
- 2 A heap building algorithm with O(n) time complexity.

Binary Heaps in Dynamic Arrays

2/21

イロト イポト イヨト イヨト

Review: Priority Queue

A priority queue stores a set S of *n* integers and supports the following operations:

- Insert(e): Adds a new integer to S.
- **Delete-min**: Removes and returns the smallest integer in *S*.

重した **Binary Heaps in Dynamic Arrays** 3/21

Review: Binary Heap

- Every node u in T corresponds to a distinct integer in S the integer is called the key of u (and is stored at u).
- If u is an internal node, the key of u is smaller than those of its child nodes.

4/21

A 3 b

Storing a Complete Binary Tree Using an Array

Let T be any complete binary tree with n nodes. We can linearize the nodes in the following manner:

- Put the nodes at a higher level before those at a lower level.
- Within the same level, order the nodes from left to right.

Store the linearized node sequence in an array A of length n.

5/21

(4 何) ト 4 日 ト 4 日 ト

Stored as

Binary Heaps in Dynamic Arrays

6/21

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Property 1: The rightmost leaf node at the bottom level is stored at A[n].

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

3

7/21

・ロト ・ 同ト ・ ヨト ・ ヨト

Property 2: Suppose that node u of T is stored at A[i]. Then, the left child of u is stored at A[2i], and the right child at A[2i+1].

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

э

8/21

・ロト ・同ト ・ヨト ・ヨト

Property 2 implies:

Property 3: Suppose that node u of T is stored at A[i]. Then, the parent of u is stored at $A[\lfloor i/2 \rfloor]$.

Binary Heaps in Dynamic Arrays

9/21

・ロト ・同ト ・ヨト ・ヨト

Now we are ready to implement the insertion and delete-min algorithms on the array representation of a binary heap.

Binary Heaps in Dynamic Arrays

10/21

< ロ > < 同 > < 回 > < 回 >

Insertion Example

Binary Heaps in Dynamic Arrays

11/21

Delete-min Example

Binary Heaps in Dynamic Arrays

э

12/21

<ロト < 同ト < 三ト < 三ト

Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we obtain the following guarantees on a binary heap implemented with a dynamic array:

- Space consumption O(n).
- Insertion: $O(\log n)$ time amortized.
- Delete-min: $O(\log n)$ time amortized.

13/21

Next, we will see a heap building algorithm that runs in O(n) time.

Binary Heaps in Dynamic Arrays

э.

14/21

・ロト ・同ト ・ヨト ・ヨト

Fixing a Messed-Up Root

First, consider the following **root-fixing** problem. Suppose that we are given a complete binary tree T with root r such that

- the left subtree of r is a binary heap;
- the right subtree of r is a binary heap.

However, the key of r may not be smaller than the keys of its children. We need to fix the issue and makes T a binary heap.

This can be done in $O(\log n)$ time using the swap-down operation from the delete-min algorithm.

15/21

A B A B A B A

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

æ

16/21

・ロト ・回ト ・モト ・モト

Given an array A that stores a set S of n integers, we can turn A into a binary heap on S using the following simple algorithm (which views A as a complete binary tree T).

- For each $i = \lfloor n/2 \rfloor$ downto 1
 - Apply swap-down to the subtree of T rooted at A[i] to fix its root.

Think: Are the conditions of the root-fixing problem always satisfied?

Binary Heaps in Dynamic Arrays

17/21

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

<ロ> <部> < き> < き> <</p>

∃ 990

18/21

Now let us analyze the time of the building algorithm. Suppose that T has height h. Without loss of generality, assume that all the levels of T are full – namely, $n = 2^h - 1$ (why no generality is lost?).

Observe:

- A node at Level h 1 incurs O(1) time in swap-down; 2^{h-1} such nodes.
- A node at Level h 2 incurs O(2) time in swap-down; 2^{h-2} such nodes.
- A node at Level h 3 incurs O(3) time in swap-down; 2^{h-3} such nodes.
- ...
- A node at Level h h incurs O(h) time in swap-down; 2⁰ such nodes.

19/21

化口水 化晶体 化压水 化压水 一压。

Hence, the total time is bounded by

$$\sum_{i=1}^{h} O\left(i \cdot 2^{h-i}\right) = O\left(\sum_{i=1}^{h} i \cdot 2^{h-i}\right)$$

We will prove that the right hand side is O(n) in the next slide.

Binary Heaps in Dynamic Arrays

20/21

<ロト < 同ト < 三ト < 三ト

Suppose that

$$x = 2^{h-1} + 2 \cdot 2^{h-2} + 3 \cdot 2^{h-3} + \dots + h \cdot 2^{0}$$
(1)

$$\Rightarrow 2x = 2^{h} + 2 \cdot 2^{h-1} + 3 \cdot 2^{h-2} + \dots + h \cdot 2^{1}$$
 (2)

Subtracting (1) from (2) gives

$$\begin{array}{rcl} x & = & 2^{h} + 2^{h-1} + 2^{h-2} + \ldots + 2^{1} - h \\ & \leq & 2^{h+1} \\ & = & 2(n+1) = O(n). \end{array}$$

CSCI 2100, The Chinese University of Hong Kong

Binary Heaps in Dynamic Arrays

э.

21/21

・ロト ・同ト ・ヨト ・ヨト