Binary Heaps in Dynamic Arrays

CSCI 2100 Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

Outline

(1) An array-based implementation of the binary heap.
(2) A heap building algorithm with $O(n)$ time complexity.

Review: Priority Queue

A priority queue stores a set S of n integers and supports the following operations:

- Insert(e): Adds a new integer to S.
- Delete-min: Removes and returns the smallest integer in S.

Review: Binary Heap

Let S be a set of n integers. A binary heap on S is a binary tree T satisfying:
(1) T is complete.
(2) Every node u in T corresponds to a distinct integer in S the integer is called the key of u (and is stored at u).
(3) If u is an internal node, the key of u is smaller than those of its child nodes.

Storing a Complete Binary Tree Using an Array

Let T be any complete binary tree with n nodes. We can linearize the nodes in the following manner:

- Put the nodes at a higher level before those at a lower level.
- Within the same level, order the nodes from left to right.

Store the linearized node sequence in an array A of length n.

Example

Stored as

Property 1: The rightmost leaf node at the bottom level is stored

 at $A[n]$.Example:

Property 2: Suppose that node u of T is stored at $A[i]$. Then, the left child of u is stored at $A[2 i]$, and the right child at $A[2 i+1]$.

Example:

Property 2 implies:

Property 3: Suppose that node u of T is stored at $A[i]$. Then, the parent of u is stored at $A[[i / 2]]$.

Now we are ready to implement the insertion and delete-min algorithms on the array representation of a binary heap.

Insertion Example

Insert 15 and swap-up.
Index:

1	2	3	4	5	6	7	8	9
1	39	8	79	54	26	23	93	15

1	2	3	4	5	6	7	8	
1	39	8	15	54	26	23	93	79

Delete-min Example

Replace 1 with 79 and swap-down.
Index: $1 \begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

1	15	8	39	54	26	23	93	79

1	2		3	4	5	6	7
79	15	8	39	54	26	23	93

1	2	3	4	5	6	7	8
8	15	79	39	54	26	23	93

1	2				3	4	5

Performance Guarantees

Combining our analysis on (i) binary heaps and (ii) dynamic arrays, we obtain the following guarantees on a binary heap implemented with a dynamic array:

- Space consumption $O(n)$.
- Insertion: $O(\log n)$ time amortized.
- Delete-min: $O(\log n)$ time amortized.

Next, we will see a heap building algorithm that runs in $O(n)$ time.

Fixing a Messed-Up Root

First, consider the following root-fixing problem. Suppose that we are given a complete binary tree T with root r such that

- the left subtree of r is a binary heap;
- the right subtree of r is a binary heap.

However, the key of r may not be smaller than the keys of its children. We need to fix the issue and makes T a binary heap.

This can be done in $O(\log n)$ time using the swap-down operation from the delete-min algorithm.

Example

Building a Heap

Given an array A that stores a set S of n integers, we can turn A into a binary heap on S using the following simple algorithm (which views A as a complete binary tree T).

- For each $i=\lfloor n / 2\rfloor$ downto 1
- Apply swap-down to the subtree of T rooted at $A[i]$ to fix its root.

Think: Are the conditions of the root-fixing problem always satisfied?

Example

Now let us analyze the time of the building algorithm. Suppose that T has height h. Without loss of generality, assume that all the levels of T are full - namely, $n=2^{h}-1$ (why no generality is lost?).

Observe:

- A node at Level $h-1$ incurs $O(1)$ time in swap-down; 2^{h-1} such nodes.
- A node at Level $h-2$ incurs $O(2)$ time in swap-down; 2^{h-2} such nodes.
- A node at Level $h-3$ incurs $O(3)$ time in swap-down; 2^{h-3} such nodes.
- ...
- A node at Level $h-h$ incurs $O(h)$ time in swap-down; 2^{0} such nodes.

Hence, the total time is bounded by

$$
\sum_{i=1}^{h} O\left(i \cdot 2^{h-i}\right)=O\left(\sum_{i=1}^{h} i \cdot 2^{h-i}\right)
$$

We will prove that the right hand side is $O(n)$ in the next slide.

Running Time

Suppose that

$$
\begin{align*}
x & =2^{h-1}+2 \cdot 2^{h-2}+3 \cdot 2^{h-3}+\ldots+h \cdot 2^{0} \tag{1}\\
\Rightarrow 2 x & =2^{h}+2 \cdot 2^{h-1}+3 \cdot 2^{h-2}+\ldots+h \cdot 2^{1} \tag{2}
\end{align*}
$$

Subtracting (1) from (2) gives

$$
\begin{aligned}
x & =2^{h}+2^{h-1}+2^{h-2}+\ldots+2^{1}-h \\
& \leq 2^{h+1} \\
& =2(n+1)=O(n)
\end{aligned}
$$

