CSCI2100 Tutorial 8

CSCI 2100 Teaching Team, Spring 2023

Review on Hash Table

- S = a set of n integers in $[1, U]$
- Main idea: divide S into a number m of disjoint "buckets"
- Set $m=\Theta(n)$
- Guarantees
- Space consumption: $O(n)$
- Preprocessing cost: $O(n)$
- Query cost: $O(1)$ in expectation

Review on Hash Table

- Divide S into a number m of disjoint buckets:
- Choose a function h from $[1, U]$ to $[1, m]$
- For each $i \in[1, m]$, create an empty linked list L_{i}
- For each $x \in S$:
- Compute $h(x)$
- Insert x into $L_{h(x)}$
- Important: choose a good hash function h

Review on Hash Table

- Construct a universal family
- Pick a prime number p such that $p \geq m$ and $p \geq U$
- Choose an integer α from [1, $p-1$] uniformly at random
- Choose an integer β from [0, $p-1$] uniformly at random
- Define a hash function:

$$
h(k)=1+((\alpha k+\beta) \bmod p) \bmod m
$$

Example

- Let $S=\{19,36,63,53,14,9,70,26\}$
- We choose $m=10, p=71$, suppose that α and β are randomly chosen to be 3 and 7 , respectively
- $h(k)=1+(((3 k+7) \bmod 71) \bmod 10)$

Relationships between Hash Functions and Queries

- Let H be the universal family defined in the previous slides
- Given a function $h \in H$ and an integer $\mathrm{q} \in[1, U]$:
- Define $\operatorname{cost}(h, q)=|\{x \in S \mid h(x)=h(q)\}|$
query value

	1	2	\ldots	U
h_{1}	$\operatorname{cost}\left(h_{1}, 1\right)$	$\operatorname{cost}\left(h_{1}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{1}, U\right)$
h_{2}	$\operatorname{cost}\left(h_{2}, 1\right)$	$\operatorname{cost}\left(h_{2}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{2}, U\right)$
\ldots	\ldots	\ldots	\ldots	\ldots.
$h_{\|H\|}$	$\operatorname{cost}\left(h_{\|H\|}, 1\right)$	$\operatorname{cost}\left(h_{\|H\|}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{\|H\|}, U\right)$
Average	$O(1)$	$O(1)$	$O(1)$	$O(1)$

Hash Table

- Worst-case expected query cost: $O(1)$
- Worst-case query cost: $O(n)$
- Question:
- Can we improve the worst-case query cost?

Hash Table: Improving the Worst Cost

- Replace linked lists with sorted arrays
- $O(n \log n)$ preprocessing cost

Hash Table: Improving the Worst Cost

- Query: whether 29 exists
- Step 1:
- Access the hash table to obtain the address of corresponding array
- O (1) time

Hash Table: Improving the Worst Cost

- Query: whether 29 exists
- Step 2:
- Perform binary search on the array to find the target
- $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$

Hash Table: Improving the Worst Cost

- This method retains the $O(1)$ worst-case expected query time.
- Proof:
- Suppose we look up an integer q
- Define random variable $X_{h(q)}$ to be the length of array that corresponds to the hash value $h(q)$
- Expected query time:

$$
\begin{aligned}
\mathrm{E}\left[\log _{2} X_{h(q)}\right] & =\sum_{l=1}^{n} \log _{2} l \operatorname{Pr}\left(X_{h(q)}=l\right) \\
& \leq \sum_{l=1}^{n} l \operatorname{Pr}\left(X_{h(q)}=l\right) \\
& =\mathrm{E}\left[X_{h(q)}\right] \\
& =O(1)
\end{aligned}
$$

The Two-Sum Problem (Revisited)

- Problem Input:
- An array A of n distinct integers (not necessarily sorted).
- Goal:
- Determine whether if there exist two different integers x and y in A satisfying $x+y=v$
- Example: find a pair whose sum is 20

11	3	17	7	2	13

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that $x+y=v$
- Observe that given $\mathrm{x}, y=v-x$, is determined
- Solution:
- Sort A
- For each x in A :
- set y as $v-x$
- Use binary search to see if y exists in the sequence
- Time complexity: $O(n \log n)$

Solution 2: Using the Hash Table

- Step 1 and 2:
- Choose a hash function h and create an empty hash table H
- Insert each x in A into $L_{h(x)}$
- Step 3:
- For $i=1$ to n
- Set y as $v-A[i]$
- Check if y is in the hash table; if it is, return yes
- Return no

Time Complexity

- Step 1 and 2: $O(n)$
- Step 3:
- The step issues n queries (one for each y)
- Let X_{i} be the time of the i-th query
- We know $E\left[X_{i}\right]=O(1)$
- The worst-case expected cost of step 3 is $\sum_{i} E\left[X_{i}\right]=O(n)$
- Overall: $O(n)$ in expectation

Sorting by Frequency (a Regular Exercise)

- Problem input:
- Let S be a multi-set of n integers. The frequency of an integer x as the number of occurrences of x in S.
- Goal: Produce an array that sorts the distinct integers in S by frequency.

input:	10	8	8	12	9	9	12	12	12:3 occurrences
									8 : 2 occurrences
									9 : 2 occurrences
output:	12	8	9	10					10: 1 occurrence

Using a Hash Table to Obtain Frequencies

10	8	8	12	9	9	12	12

Using a Hash Table to Obtain Frequencies

10	8	8	12	9	9	12	12

Using a Hash Table to Obtain Frequencies

10	8	8	12	9	9	12	12

Using a Hash Table to Obtain Frequencies

10	8	8	12	9	9	12	12

Using a Hash Table to Obtain Frequencies

10	8	8	12	9	9	12	12

Using a Hash Table to Obtain Frequencies

- The final state:

10	8	8	12	9	9	12	12

Counting Sort!

- Now we sort the numbers by frequency.
- Key observation: each frequency is in $[1, n]$.
- We can carry out the sorting with counting sort in $O(n)$ time.

Total time complexity: $O(n)$ expected time.

