CSCI2100 Tutorial 8

CSCI 2100 Teaching Team, Spring 2023

Review on Hash Table

- S = a set of n integers in [1, U]
- Main idea: divide S into a number m of disjoint "buckets"
- Set $m = \Theta(n)$
- Guarantees
 - Space consumption: O(n)
 - Preprocessing cost: O(n)
 - Query cost: O(1) in expectation

Review on Hash Table

- Divide S into a number m of disjoint buckets:
 - Choose a function h from [1, U] to [1, m]
 - For each $i \in [1, m]$, create an empty linked list L_i
 - For each $x \in S$:
 - Compute h(x)
 - Insert x into $L_{h(x)}$
- Important: choose a good hash function h

Review on Hash Table

- Construct a universal family
 - Pick a prime number p such that $p \ge m$ and $p \ge U$
 - Choose an integer α from [1, p-1] uniformly at random
 - Choose an integer β from [0, p-1] uniformly at random
 - Define a hash function:

$$h(k) = 1 + ((\alpha k + \beta) \bmod p) \bmod m$$

Example

- Let $S = \{19,36,63,53,14,9,70,26\}$
- We choose m=10, p=71, suppose that α and β are randomly chosen to be 3 and 7, respectively
- $h(k) = 1 + (((3k + 7) \mod 71) \mod 10)$

Relationships between Hash Functions and Queries

- Let H be the universal family defined in the previous slides
- Given a function $h \in H$ and an integer $q \in [1, U]$:
 - Define $cost(h, q) = |\{x \in S \mid h(x) = h(q)\}|$

query value

	1	2		U
h_1	$cost(h_1, 1)$	$cost(h_1, 2)$		$cost(h_1, U)$
h_2	$cost(h_2, 1)$	$cost(h_2, 2)$		$cost(h_2, U)$
•••		••••		••••
$h_{ H }$	$cost(h_{ H }, 1)$	$cost(h_{ H }, 2)$		$cost(h_{ H }, U)$
Average	0(1)	0(1)	0(1)	0(1)

Hash Table

- Worst-case expected query cost: O(1)
- Worst-case query cost: O(n)
- Question:
 - Can we improve the worst-case query cost?

- Replace linked lists with sorted arrays
- $O(n \log n)$ preprocessing cost

- Query: whether 29 exists
- Step 1:
 - Access the hash table to obtain the address of corresponding array
 - *O*(1) time

- Query: whether 29 exists
- Step 2:
 - Perform binary search on the array to find the target
 - $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$

- This method retains the O(1) worst-case expected query time.
- Proof:
 - Suppose we look up an integer q
 - Define random variable $X_{h(q)}$ to be the length of array that corresponds to the hash value h(q)
 - Expected query time:

$$E[\log_2 X_{h(q)}] = \sum_{l=1}^n \log_2 l \Pr(X_{h(q)} = l)$$

$$\leq \sum_{l=1}^n l \Pr(X_{h(q)} = l)$$

$$= E[X_{h(q)}]$$

$$= O(1)$$

The Two-Sum Problem (Revisited)

- Problem Input:
 - An array A of n distinct integers (not necessarily sorted).
- Goal:
 - Determine whether if there exist two different integers x and y in A satisfying x+y=v
- Example: find a pair whose sum is 20

11 3	17	7	2	13
------	----	---	---	----

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that x + y = v
- Observe that given x, y = v x, is determined
- Solution:
 - Sort A
 - For each x in A:
 - set y as v x
 - Use binary search to see if y exists in the sequence
- Time complexity: $O(n \log n)$

Solution 2: Using the Hash Table

- Step 1 and 2:
 - Choose a hash function h and create an empty hash table H
 - Insert each x in A into $L_{h(x)}$
- Step 3:
 - For i = 1 to n
 - Set y as v A[i]
 - Check if y is in the hash table; if it is, return yes
 - Return no

Time Complexity

• Step 1 and 2: O(n)

- Step 3:
 - The step issues *n* queries (one for each *y*)
 - Let X_i be the time of the i-th query
 - We know $E[X_i] = O(1)$
 - The worst-case expected cost of step 3 is $\sum_i E[X_i] = O(n)$
- Overall: O(n) in expectation

Sorting by Frequency (a Regular Exercise)

- Problem input:
 - Let S be a multi-set of n integers. The frequency of an integer x as the number of occurrences of x in S.
- Goal: Produce an array that sorts the distinct integers in S by frequency.

input: 10 8 8 12 9 9 12 12 12 12:3 occurrences 8:2 occurrences

output: | 12 | 8 | 9 | 10

8:2 occurrences
9:2 occurrences

10:1 occurrence

• The final state:

Counting Sort!

- Now we sort the numbers by frequency.
- Key observation: each frequency is in [1, n].
- We can carry out the sorting with counting sort in O(n) time.

Total time complexity: O(n) expected time.