Week 3 Tutorial

Hao WU CSE Dept, CUHK

CSCI2100 2022 Spring, CUHK

Week 3 Tutorial

.

1/21

*ロ * *母 * * ヨ * * ヨ *

The Predecessor Search Problem

Problem Input

- An array A of n integers in ascending order
- A search value q

Goal:

Find the predecessor of q in A.

Remark: the predecessor of q is the largest element in A that is smaller than or equal to q.

-∢ ∃ ▶

2/21

- 1. If q = 23, the predecessor is 21.
- 2. If q = 21, the predecessor is also 21.
- 3. If q = 1, no predecessor.

2 3 5 8 13 21 34 55

Α

CSCI2100 2022 Spring, CUHK

Week 3 Tutorial

э

3/21

- ∢ ⊒ →

< 口 > < 同 >

- If A contains q, binary search will find q directly.
- If A does not contain q, the predecessor of q can be easily inferred from where the algorithm terminates.

2 3 5 8 13 21 34 55

Α

э

4/21

・ロト ・同ト ・ヨト ・ヨト

The Two-Sum Problem

Input

- An array of *n* integers in ascending order.
- An integer v.

Goal:

Determine whether A contains two different integers x and y such that x + y = v.

3

イロト イボト イヨト イヨト

Example

- If v = 30, answer "yes".
- If v = 29, answer "no".

2	3	5	7	11	13	17	19	23	29	31	37	
---	---	---	---	----	----	----	----	----	----	----	----	--

2

6/21

・ロト ・四ト ・ヨト ・ヨト

Use binary search as a building brick.

Key idea: For each x in the array, look for v - x with binary search.

CSCI2100 2022 Spring, CUHK

Week 3 Tutorial

7/21

< D > < A > < B > < B >

This algorithm performs at most n binary searches.

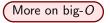
Cost of the algorithm: $O(n \log n)$

Can you do even better?

Try to solve this problem in O(n) time (not covered in this tutorial).

8/21

(日)



Recall the definition of f(n) = O(g(n)):

f(n) = O(g(n)), if there exist two positive constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ holds for all $n \ge c_2$.

Another approach is to compute $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ and decide as follows:

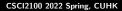
- f(n) = O(g(n)), if the limit is bounded by an constant;
- $f(n) \neq O(g(n))$, if the limit is ∞ .

Note: there is a third possibility for the limit, where the approach will fail.

-

9/21

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).



Week 3 Tutorial

э

10/21

< ロ > < 部 > < き > < き >

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Method 1: Constant finding

- Fix c₁
- Solve for c₂
- If a c_2 cannot be found, go back to Step 1 and try a different c_1 .

-

11/21

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$f(n) = 10n + 5$$
 and $g(n) = n^2$. Prove $f(n) = O(g(n))$

 $({\rm try}\ c_1=5)$

$$f(n) \le c_1 \cdot g(n)$$

$$\Leftrightarrow \quad 10n + 5 \le c_1 \cdot n^2$$

$$\Leftrightarrow \quad 5(2n+1) \le 5 \cdot n^2$$

$$\Leftrightarrow \quad 2n+1 \le n^2$$

$$\Leftrightarrow \quad 2 \le (n-1)^2$$

$$\Leftarrow \quad 3 \le n$$

Hence, it suffices to set $c_2 = 3$.

э

12/21

< ロ > < 同 > < 回 > < 回 >

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove f(n) = O(g(n)).

Method 2: Limit

$$\lim_{n\to\infty}\frac{10n+5}{n^2}=\lim_{n\to\infty}\frac{10+5/n}{n}=0.$$
 Hence, $f(n)=O(g(n)).$

э.

13/21

・ロト ・日ト ・モト・モート

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 1: Constant finding (prove by contradiction)

Suppose that g(n) = O(f(n)), i.e., there are constants c_1, c_2 such that, for all $n \ge c_2$, we have

$$n^2 \le c_1 \cdot (10n+5)$$

 $\Rightarrow n^2 \le c_1 \cdot 20n$
 $\Leftrightarrow n \le 20c_1$

which cannot hold for all $n \ge c_2$, regardless of c_2 . This gives a contradiction.

14/21

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let f(n) = 10n + 5 and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 2: Limit

$$\lim_{n\to\infty}\frac{n^2}{10n+5}=\infty.$$

Hence, $g(n) \neq O(f(n))$.

э.

15/21

< ロ > < 同 > < 回 > < 回 >

In some rare scenarios, the limit approach may fail. We will see an example next.

э

16/21

・ロト ・ 一下・ ・ ヨト ・

Consider $f(n) = 2^n$. Define g(n) as:

- $g(n) = 2^n$ if *n* is even;
- $g(n) = 2^{n-1}$ otherwise.

Since $f(n) \leq 2g(n)$ holds for all $n \geq 1$, it holds that f(n) = O(g(n)).

However, $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ does not exist, because it keeps jumping between 1 and 2 as *n* increases!

17/21

- 4 回 ト 4 ヨ ト 4 ヨ ト

Next, we discuss how to extend the big-O definition to two variables. The definition can be extended to more variables following the same idea.

18/21

▲□→ < □→</p>

Big-O with Two Variables

Let f(n, m) and g(n, m) be functions of variables n and m satisfying $f(n, m) \ge 0$ and $g(n, m) \ge 0$. We say f(n, m) = O(g(n, m)) if there exist constants c_1 and c_2 such that $f(n, m) \le c_1 \cdot g(n, m)$ holds for all $n \ge c_2$ and $m \ge c_2$.

19/21

< A > < > > <

Regular Excercise 2 Problem 8

Let $f(n, m) = n^2 m + 100 nm$ and $g(n, m) = n^2 m$. Prove f(n, m) = O(g(n, m)).

Obviously:

$$n^2m + 100nm \leq 101n^2m$$

for any $n \ge 1$ and $m \ge 1$. Hence, it suffices to set $c_1 = 101$ and $c_2 = 1$.

20/21

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Let $f(n, m) = n^2 m + 100 nm^2$ and $g(n, m) = n^2 m + nm^2$. Prove f(n, m) = O(g(n, m)).

Obviously:

$$n^2m + 100nm^2 \leq 100(n^2m + nm^2)$$

for any $n \ge 1$ and $m \ge 1$. Hence, it suffices to set $c_1 = 100$ and $c_2 = 1$.

-

21/21

< ロ > < 同 > < 回 > < 回 >