Week 3 Tutorial

Hao WU
CSE Dept, CUHK

The Predecessor Search Problem

Problem Input

- An array A of n integers in ascending order
- A search value q

Goal:

Find the predecessor of q in A.

Remark: the predecessor of q is the largest element in A that is smaller than or equal to q.

Example

1. If $q=23$, the predecessor is 21 .
2. If $q=21$, the predecessor is also 21 .
3. If $q=1$, no predecessor.

Binary Search

- If A contains q, binary search will find q directly.
- If A does not contain q, the predecessor of q can be easily inferred from where the algorithm terminates.

The Two-Sum Problem
$\overline{\text { Input }}$

- An array of n integers in ascending order.
- An integer v.

Goal:
Determine whether A contains two different integers x and y such that $x+y=v$.

Example

- If $v=30$, answer "yes".
- If $v=29$, answer "no".

2	3	5	7	11	13	17	19	23	29	31	37

Solution

Use binary search as a building brick.
Key idea: For each x in the array, look for $v-x$ with binary search.

Analysis

This algorithm performs at most n binary searches.
Cost of the algorithm: $O(n \log n)$

Can you do even better?
Try to solve this problem in $O(n)$ time (not covered in this tutorial).

More on big-O

Recall the definition of $f(n)=O(g(n))$:
$f(n)=O(g(n))$, if there exist two positive constants c_{1} and c_{2} such that $f(n) \leq c_{1} \cdot g(n)$ holds for all $n \geq c_{2}$.

Another approach is to compute $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ and decide as follows:

- $f(n)=O(g(n))$, if the limit is bounded by an constant;
- $f(n) \neq O(g(n))$, if the limit is ∞.

Note: there is a third possibility for the limit, where the approach will fail.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$.

Method 1: Constant finding
(1) Fix c_{1}
(2) Solve for c_{2}
(3) If a c_{2} cannot be found, go back to Step 1 and try a different c_{1}.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$
$\left(\operatorname{try} c_{1}=5\right)$

$$
\begin{array}{ll}
& f(n) \leq c_{1} \cdot g(n) \\
\Leftrightarrow & 10 n+5 \leq c_{1} \cdot n^{2} \\
\Leftrightarrow & 5(2 n+1) \leq 5 \cdot n^{2} \\
\Leftrightarrow & 2 n+1 \leq n^{2} \\
\Leftrightarrow & 2 \leq(n-1)^{2} \\
\Leftrightarrow & 3 \leq n
\end{array}
$$

Hence, it suffices to set $c_{2}=3$.

Exercise 1

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $f(n)=O(g(n))$.

Method 2: Limit

$$
\lim _{n \rightarrow \infty} \frac{10 n+5}{n^{2}}=\lim _{n \rightarrow \infty} \frac{10+5 / n}{n}=0
$$

Hence, $f(n)=O(g(n))$.

Exercise 2

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $g(n) \neq O(f(n))$.

Method 1: Constant finding (prove by contradiction)
Suppose that $g(n)=O(f(n))$, i.e., there are constants c_{1}, c_{2} such that, for all $n \geq c_{2}$, we have

$$
\begin{array}{ll}
& n^{2} \leq c_{1} \cdot(10 n+5) \\
\Rightarrow & n^{2} \leq c_{1} \cdot 20 n \\
\Leftrightarrow & n \leq 20 c_{1}
\end{array}
$$

which cannot hold for all $n \geq c_{2}$, regardless of c_{2}. This gives a contradiction.

Exercise 2

Let $f(n)=10 n+5$ and $g(n)=n^{2}$. Prove $g(n) \neq O(f(n))$.

Method 2: Limit

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{10 n+5}=\infty
$$

Hence, $g(n) \neq O(f(n))$.

In some rare scenarios, the limit approach may fail. We will see an example next.

Consider $f(n)=2^{n}$. Define $g(n)$ as:

- $g(n)=2^{n}$ if n is even;
- $g(n)=2^{n-1}$ otherwise.

Since $f(n) \leq 2 g(n)$ holds for all $n \geq 1$, it holds that $f(n)=O(g(n))$.
However, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ does not exist, because it keeps jumping between 1 and 2 as n increases!

Next, we discuss how to extend the big- O definition to two variables. The definition can be extended to more variables following the same idea.

Big-O with Two Variables

Let $f(n, m)$ and $g(n, m)$ be functions of variables n and m satisfying $f(n, m) \geq 0$ and $g(n, m) \geq 0$. We say $f(n, m)=O(g(n, m))$ if there exist constants c_{1} and c_{2} such that $f(n, m) \leq c_{1} \cdot g(n, m)$ holds for all $n \geq c_{2}$ and $m \geq c_{2}$.

Regular Excercise 2 Problem 8
Let $f(n, m)=n^{2} m+100 n m$ and $g(n, m)=n^{2} m$. Prove $f(n, m)=O(g(n, m))$.

Obviously:

$$
n^{2} m+100 n m \leq 101 n^{2} m
$$

for any $n \geq 1$ and $m \geq 1$.
Hence, it suffices to set $c_{1}=101$ and $c_{2}=1$.

Let $f(n, m)=n^{2} m+100 n m^{2}$ and $g(n, m)=n^{2} m+n m^{2}$.
Prove $f(n, m)=O(g(n, m))$.

Obviously:

$$
n^{2} m+100 n m^{2} \leq 100\left(n^{2} m+n m^{2}\right)
$$

for any $n \geq 1$ and $m \geq 1$.
Hence, it suffices to set $c_{1}=100$ and $c_{2}=1$.

