# Connected Components and Correctness of BFS in SSSP

CSCI 2100 Teaching Team



Connected Components and Correctness of BFS in SSSP

1/16

- **A B b A** 



Today's tutorial covers:

- finding connected components;
- proving that BFS correctly solves the unit-weight SSSP problem.



Connected Components and Correctness of BFS in SSSP

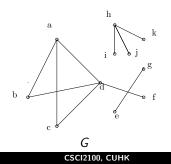
2/16

### Connected Components

**Problem**: Let G = (V, E) be an undirected graph. Our goal is to compute all the **connected components** (CC) of *G*.

A CC of G includes a set  $S \subseteq V$  of vertices such that:

- (Connectivity) any two vertices in S are reachable from each other;
- (Maximality) it is not possible to add another vertex to *S* while still satisfying the above requirement.



Output:  $\{a, b, c, d, f\}, \{g, e\}, \{h, i, j, k\}$ 

Connected Components and Correctness of BFS in SSSP



**Lemma 1:** Take an arbitrary vertex s. The CC of s is the set S of vertices in G reachable from s.

## **Proof:**

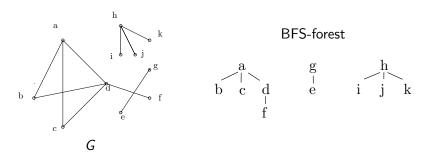
- Connectivity: any two vertices in S can reach each other via s.
- Maximality: any vertex outside S is unreachable from s.

4/16

4 3 6 4 3 6



- 1. Run BFS on G starting from a white source vertex
- 2. Output the vertex set of the BFS-tree
- 3. If there is still a white vertex in G, repeat from 1



Proof of Correctness

**Claim**: The vertex set S of every BFS-tree is a CC of G.

**Proof**: Follows immediately because BFS finds all the vertices reachable from *s*.



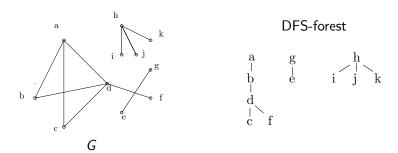
Connected Components and Correctness of BFS in SSSP

6/16

4 E 6 4 E 6



- 1. Run DFS on G starting from a white source vertex
- 2. Output the vertex set of the DFS-tree
- 3. If there is still a white vertex in G, repeat from 1



Proof of correctness

**Claim**: The vertex set *S* of each DFS-tree is a CC of *G*.

**Proof**: Let *s* be the source vertex of DFS. We will show that the DFS-tree contains all and only the vertices reachable from *s*.

Let v be a vertex reachable from s. At the beginning of DFS, there is a white path from s to v. By the white path theorem, v must be in the subtree of s, namely, in the DFS-tree.

It is obvious that every vertex in the DFS-tree is reachable from s.

Single Source Shortest Path (SSSP) with Unit Weights

Let G = (V, E) be a directed graph, and s be a vertex in V. The goal of the **SSSP problem** is to find, for every other vertex  $t \in V \setminus \{s\}$ , a shortest path from s to t, unless t is unreachable from s.



Connected Components and Correctness of BFS in SSSP

ъ.

9/16

イロト イヨト イヨト

Using BFS to Solve SSSP Problem

Run BFS algorithm starting from s on G, which returns a **BFS-tree** T.

For any  $v \in V \setminus \{s\}$ , report the path from s to v in T as the shortest path from s to v in G.



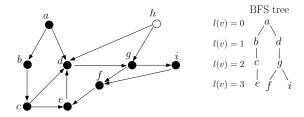
Connected Components and Correctness of BFS in SSSP

-

10/16

Proof of Correctness

We first prove a useful lemma.



CSCI2100, CUHK

Connected Components and Correctness of BFS in SSSP

э

11/16

\* E > \* E >

< 🗇 🕨

**Lemma 2:** For any two vertices  $u, v \in V$  such that  $u \neq v$ , if l(u) < l(v), it must hold that u is enqueued before v during the BFS.

**Proof:** We will prove this by induction.

Base Case.  $l(u) < l(v) \le 1$ .

We must have l(u) = 0 and l(v) = 1, which means u is the source s. As s is enqueued at the very beginning of BFS, s is enqueued before v. The base case holds.

#### Inductive Case.

**Inductive assumption:** For any two vertices u, v satisfying  $l(u) < l(v) \le L - 1$  where  $L \ge 2$ , it always holds that u is enqueued before v.

Consider any vertices u and v satisfying l(u) < l(v) = L. Let  $p_u$  and  $p_v$  be their parents in the BFS-tree T, respectively. We have  $l(p_u) = l(u) - 1$  and  $l(p_v) = l(v) - 1$ .

It follows that  $l(p_u) < l(p_v) \le L - 1$ . By the inductive assumption,  $p_u$  is enqueued before  $p_v$ . From the FIFO property of queue,  $p_u$  is dequeued before  $p_v$ . As u (resp., v) is enqueued right after  $p_u$  (resp.,  $p_v$ ) is dequeued, u is enqueued before v.

13/16

イロト イポト イラト イラト 一声

We now prove the correctness of BBS.

**Theorem:** For any vertex  $v \in V$ , the path from s to v in T is a shortest path from s to v in G.

We will prove a stronger claim by induction:

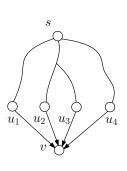
**Claim:** If a vertex  $v \in V$  has shortest path distance L from s, then l(v) = L.

## **Base Case.** L = 0 or 1.

- s is the only vertex with shortest path distance 0 from s. It is obvious that l(s) = 0.
- Every vertex v with shortest path distance 1 from s will be enqueued when s is dequeued and thus has l(v) = 1.

14/16

伺下 イヨト イヨト



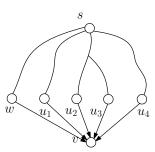
**Inductive Case. Inductive assumption:** If a vertex v has shortest path distance  $L \le k - 1$  from s where  $k \ge 2$ , then l(v) = L.

Let v be a vertex with shortest path distance k from s. Consider all the shortest paths from s to v and let U denote the set of predecessors of v in those paths. Furthermore, let  $u_1$  denote the vertex in U that was enqueued the earliest. The shortest path distance from s to  $u_1$  is k-1.

By the induction assumption,  $l(u_1) = k - 1$ . To prove l(v) = k, it suffices to prove that v is enqueued at the moment  $u_1$  is dequeued, namely, v is still white when  $u_1$  is dequeued. We will prove this by contradiction.

15/16

・ 同 ト ・ ヨ ト ・ ヨ ト



Suppose that when  $u_1$  is dequeued, v is not white.

Define w as the parent of v in T (i.e., v is enqueued after w is dequeued). By Lemma 2, We have  $l(w) \le l(u_1)$  as w is dequeued before  $u_1$ . We further have  $l(w) \ne l(u_1)$ ; otherwise, wmust belong to U, which contradicts the definition of  $u_1$ .

It follows that  $l(w) < l(u_1)$ . However, this means that the shortest path distance from s to w is less than k - 1. Thus, the shortest path distance from s to v is less than k, giving a contradiction.