DFS and the White Path Theorem

CSCI 2100 Teaching Team

Department of Computer Science and Engineering Chinese University of Hong Kong

CSCI 2100, The Chinese University of Hong Kong

DFS and the White Path Theorem

1/25

4日 > 4 間 > 4 目 > 4

In this tutorial, we will first review DFS and then prove the white path theorem.

DFS and the White Path Theorem

э

2/25

イロト イボト イヨト イヨト

Let us first go over the DFS algorithm through an example.

Input

Suppose we start from the vertex *a*, namely *a* is the root of DFS tree.

DFS and the White Path Theorem

3/25

- 日田 - 日

Image: A matrix

First, color all the vertices white. Then, create a **stack** *S*, push the starting vertex *a* into *S* and color it gray. Create a DFS tree with *a* as the root and set its time interval to I(a) = [1, -].

$$S = (a).$$

DFS and the White Path Theorem

4/25

< ロト < 同ト < 三ト

Top of stack: *a*, which has white out-neighbors *b*, *c*, *f*. Suppose we access *c* first. Push *c* into *S*.

S = (a, c).

DFS and the White Path Theorem

5/25

After pushing d into S:

DFS Tree	Time Interval
a	I(a) = [1,]
Ċ	I(c) = [2,]
d	I(d) = [3,]

S = (a, c, d).

DFS and the White Path Theorem

э

6/25

Now d tops the stack. It has white out-neighbors e, f and g. Suppose we visit g first. Push g into S.

$$S = (a, c, d, g).$$

DFS and the White Path Theorem

7/25

4日 > 4 間 > 4 目 > 4

After pushing *e* into *S*:

DFS Tree	Time Interval
a	I(a) = [1,]
Ċ	I(c) = [2,]
	I(d) = [3,]
$\overset{ }{g}$	I(g) = [4,]
$\stackrel{ }{e}$	I(e) = [5,]

S = (a, c, d, g, e).

DFS and the White Path Theorem

э

8/25

イロト イボト イヨト イヨト

e has no white out-neighbors. So pop it from S and color it black. Similarly, g has no white out-neighbors. Pop it from S and color it black.

S=(a,c,d).

DFS and the White Path Theorem

9/25

- A 🖻 🕨

< 口 > < 同 >

Now d tops the stack again. It still has a white out-neighbor f. So, push f into S.

S = (a, c, d, f).

DFS and the White Path Theorem

10/25

After popping f, d, c:

S = (a).

DFS and the White Path Theorem

11/25

イロト イヨト イヨト

Now a tops the stack again. It still has a white out-neighbor b. So, push b into S.

S = (a, b).

DFS and the White Path Theorem

12/25

Image: A image: A

After popping *b* and *a*:

S = ().

There are no more white vertices. The algorithm terminates.

-DFS and the White Path Theorem 13/25

4 回 > 4 回 > 4

Problem Input:

A directed graph.

Problem Output:

A boolean value indicating whether the graph contains a cycle.

CSCI 2100, The Chinese University of Hong Kong

DFS and the White Path Theorem

э

14/25

・ロッ ・雪 ・ ・ ヨ ・

I(b) = [12, 13]

CSCI 2100, The Chinese University of Hong Kong

DFS and the White Path Theorem

15/25

< ロ > < 同 > < 回 > < 回 >

Second Step: Find Back Edges)

DFS Tree Time Interval a I(a) = [1, 14] c b I(c) = [2, 11] d I(d) = [3, 10] g f I(g) = [4, 7] e I(e) = [5, 6] I(f) = [8, 9]I(b) = [12, 13]

Cycle Theorem: Let T be an **arbitrary** DFS-forest. G contains a cycle **if and only if** there is a back edge with respect to T.

DFS and the White Path Theorem

16/25

・ 同 ト ・ 三 ト ・ 三

Second Step: Find Back Edges

Theorem (the Parenthesis Theorem): Let u and v be two distinct vertices in G. Then:

- I(u) contains I(v) if and only if u is an ancestor of v in the DFS-forest.
- I(v) contains I(u) if and only if v is an ancestor of u in the DFS-forest.
- I(u) and I(v) are disjoint **if and only if** neither u nor v is an ancestor of the other.

Recall that our proof of the cycle theorem (presented in the lecture) relied on the **white path theorem**. We will prove the latter theorem in the rest of the tutorial.

18/25

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem: Let u be a vertex in G. Consider the moment right before u enters the stack in the DFS algorithm. Then, a vertex v becomes a proper descendant of u in the DFS-forest **if and only** if the following is true at this moment:

• there is a path from *u* to *v* including only white vertices.

19/25

When *c* is pushed into the stack, we have:

$$S = \boxed{a} \leftarrow c$$

DFS and the White Path Theorem

20/25

< A ▶

A 3 b

Recall:

Lemma (the Ancestor-Descendent Lemma): Let u and v be two distinct vertices in G. Then, u is an ancestor of v in the DFS-forest **if and only if** the following holds: u is already in the stack when v enters the stack.

Example: When d enters the stack, a and c are in the stack. d is a descendant of a and c in the DFS-tree.

DFS and the White Path Theorem

Theorem: Let u be a vertex in G. Consider the moment right before u enters the stack in the DFS algorithm. Then, a vertex v becomes a proper descendant of u in the DFS-forest **if and only** if the following is true at this moment:

• there is a path from *u* to *v* including only white vertices.

Proof: The "only-if direction" (\Rightarrow) : Let

- v be a descendant of u in the DFS tree;
- π be the path from u to v in the tree.

Clearly, π is also a path from u to v in G.

22/25

Proof of White Path Theorem

All the nodes on π except for u are proper descendants of u. By the ancestor-descendant lemma, those nodes must enter the stack after u. Hence, π must be white at the moment right before u enters the stack.

DFS and the White Path Theorem

23/25

・ 同 ト ・ ヨ ト ・ ヨ

Proof of White Path Theorem

The "if direction" (\Leftarrow): Right before *u* enters the stack, a white path π exists from *u* to *v*. We will prove that all the vertices on π must be descendants of *u* in the DFS-forest.

Suppose that this is not true. Let v' be the first vertex on π — in the order from u to v — that is **not** a descendant of u in the DFS-forest. Clearly $v' \neq u$. Let u' be the vertex preceding v' on π (note: u' may be u).

By the way u' is defined, it must be a descendant of u in the DFS-forest. By the ancestor-descendant lemma, if $u \neq u'$, then u must already be in the stack when u' enters the stack.

24/25

Consider the moment when u' turns **black** (i.e., u' leaving the stack).

1 The color of v' cannot be white.

Otherwise, v' is a white out-neighbor of u', in which case u' cannot be turning black.

2 Hence, the color of v' must be gray or black.

Recall that when u entered stack, v' was white. Therefore, v' must have been pushed into the stack while u was still in the stack. By the ancestor-descendant lemma, v' must be a descendant of u in the DFS-forest. This, however, contradicts the definition of v'.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶