Tutorial 10

Tutorial 10
 CSCI2100 Teaching Team

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Binary Search Tree Example

Two possible BSTs on $S=\{3,11,12,15,18,29,40,41,47,68,71,92\}$:

Predecessor Query
Let S be a set of integers. A predecessor query for a given integer q is to find its predecessor in S, which is the largest integer in S that does not exceed q.

Example

Suppose that $S=\{3,11,12,15,18,29,40,41,47,68,71,92\}$ and we have a balanced BST T on S :

We want to find the predecessor of $q=42$ in S. Nodes accessed: 40, 68, 41, and 47.

Successor Query
Let S be a set of integers. A successor query for a given integer q is to find its successor in S, which is the smallest integer in S that is no smaller than q.

Example
We want to find the successor of $q=17$ in S.

Nodes accessed: 40, 15, 29, and 18.

Construction of a Balanced BST

In the following, we will discuss how to construct a balanced BST T on a sorted set S of n integers in $O(n)$ time.

Construction of a Balanced BST

Assume that S is stored in an array A and A is sorted.

- Observation: The subtree of any node in a balanced BST is also a balanced BST.
- Main idea:

Example

Let us construct a balanced BST T on the following sorted array A.

Construction of a Balanced BST

Let $f(n)$ be the maximum running time for constructing a balanced BST from an array of length n. We have:

$$
\begin{aligned}
& f(1)=O(1) \\
& f(n)=O(1)+2 \cdot f(\lceil n / 2\rceil)
\end{aligned}
$$

Solving the recurrence gives $f(n)=O(n)$.

Rebalancing

In lectures we explored the Left-Left and Left-Right cases in detail, so here we will look at Right-Right and Right-Left:

Right-Right

Fix by a rotation (symmetric to left-left):

Note that $x=h$ or $h+1$, and the ordering from left to right of A, a, B, b, C is preserved after rotation.

Right-Left

Fix by a double rotation (symmetric to left-right):

Note that x and y must be h or $h-1$. Futhermore at least one of them must be h.

Right-Right Example

Inserting 50:

Right-Left Example

Inserting 38:

Range Reporting

Let S be a set of n integers. Given an interval $[q, \infty)$, a range query reports all the integers of S that fall in $[q, \infty)$. Describe an algorithm to use a balanced BST on S to answer a query in $O(\log n+k)$, where k is the number of integers reported.

For the query $[27,+\infty)$, we need to report the integers in pink.

Range Reporting

To answer a query $[q, \infty)$, we do the following at the root:

- If $a<q$, recursively report the integers in T_{2} that fall in $[q, \infty)$.
- If $a=q$, report a and all the integers in T_{2}.
- If $a>q$, report a and all the integers in T_{2}. After that, recursively report the integers in T_{1} that fall in $[q, \infty)$.

Range Reporting

The tutor will explain the algorithm using $[27,+\infty)$ as the example query.

In each level of the recursion, we do the following:

- Compare q to the integer stored in the root, the cost of which is $O(1)$.
- (If necessary) report all the integers in the right subtree, the cost of which is proportional to the number of integers in the right subtree.

As the height of the BST is $O(\log n)$, the first bullet costs $O(\log n)$ in total. The second step reports integers from disjoint subtrees and, therefore, incurs cost $O(k)$ in total. The overall cost is $O(\log n+k)$

