Three Exercises for Discussion

Shiyuan Deng

Department of Computer Science and Engineering
Chinese University of Hong Kong
Exercise 1 (Problem 1 of Regular Exercises List 1)

Let \(x \) be a real value. Define \(\lfloor x \rfloor \) to be the largest integer that does not exceed \(x \). For example, \(\lfloor 2.5 \rfloor = 2 \), whereas \(\lfloor 3 \rfloor = 3 \). Suppose that you are given an integer \(n \geq 2 \) in (a register of) the CPU. Write an algorithm to compute the value of \(\lfloor \log_2 n \rfloor \) in no more than \(100 \log_2 n \) time.
Exercise 2

You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to output the binary representation of n in no more than $100 \lceil \log_2(n + 1) \rceil$ time. For example, the binary representations of 7 and 8 are 111 and 1000, respectively.
Solution to Exercise 2

Let $b_ib_{i-1}...b_0$ be the binary representation of n.

Observation 1: The integer division $\lfloor n/2 \rfloor$ gives $b_ib_{i-1}...b_2b_1$. Thus, the last bit b_0 can be calculated as $b_0 = n - \lfloor n/2 \rfloor \cdot 2$.

Observation 2: We can obtain b_1 by repeating the above on $b_ib_{i-1}...b_2b_1$.

Next, we analyze the running time. The binary form of n has $\lceil \log_2(n + 1) \rceil$ digits. Therefore, we need to repeat for $\lceil \log_2(n + 1) \rceil$ times. We leave it to you to implement each repeat using no more than 100 atomic operations (this is trivial). Therefore, the total cost is at most $100\lceil \log_2(n + 1) \rceil$.
Exercise 3

You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to calculate $\lfloor \sqrt{n} \rfloor$. Your algorithm should have a cost no more than $100\sqrt{n}$.
Solution to Exercise 3

Key observation: \(\lfloor \sqrt{n} \rfloor \) is the largest integer \(x \geq 1 \) satisfying \(x^2 \leq n \).

Algorithm:

1. \(i \leftarrow 1 \)
2. \(\textbf{do} \)
3. \(\textbf{if} \ i^2 > n \textbf{ then return } i - 1 \)
4. \(i \leftarrow i + 1 \)