Three Exercises for Discussion

Shiyuan Deng
Department of Computer Science and Engineering
Chinese University of Hong Kong

Exercise 1 (Problem 1 of Regular Exercises List 1)

Let x be a real value. Define $\lfloor x\rfloor$ to be the largest integer that does not exceed x. For example, $\lfloor 2.5\rfloor=2$, whereas $\lfloor 3\rfloor=3$. Suppose that you are given an integer $n \geq 2$ in (a register of) the CPU. Write an algorithm to compute the value of $\left\lfloor\log _{2} n\right\rfloor$ in no more than $100 \log _{2} n$ time.

Exercise 2

You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to output the binary representation of n in no more than $100\left\lceil\log _{2}(n+1)\right\rceil$ time. For example, the binary representations of 7 and 8 are 111 and 1000, respectively.

Solution to Exercise 2
Let $b_{i} b_{i-1} \ldots b_{0}$ be the binary representation of n.

Observation 1: The integer division $\lfloor n / 2\rfloor$ gives $b_{i} b_{i-1} \ldots b_{2} b_{1}$. Thus, the last bit b_{0} can be calculated as $b_{0}=n-\lfloor n / 2\rfloor \cdot 2$.

Observation 2: We can obtain b_{1} by repeating the above on $b_{i} b_{i-1} \ldots b_{2} b_{1}$.

Next, we analyze the running time. The binary form of n has $\left\lceil\log _{2}(n+1)\right\rceil$ digits. Therefore, we need to repeat for $\left\lceil\log _{2}(n+1)\right\rceil$ times. We leave it to you to implement each repeat using no more than 100 atomic operations (this is trivial). Therefore, the total cost is at most $100\left\lceil\log _{2}(n+1)\right\rceil$.

Exercise 3

You are given a positive integer n (that is stored in a register of the CPU). Design an algorithm to calculate $\lfloor\sqrt{n}\rfloor$. Your algorithm should have a cost no more than $100 \sqrt{n}$.

Solution to Exercise 3
Key observation: $\lfloor\sqrt{n}\rfloor$ is the largest integer $x \geq 1$ satisfying $x^{2} \leq n$.

Algorithm:

1. $i \leftarrow 1$
2. do
3. if $i^{2}>n$ then return $i-1$
4. $\quad i \leftarrow i+1$
