CSCI2100: Special Exercise Set 5

Prepared by Yufei Tao

Problem 1. Let S_{1} and S_{2} be two sets of integers (they are not necessarily disjoint). We know that $\left|S_{1}\right|=\left|S_{2}\right|=n$ (i.e., each set has n integers). Design an algorithm to report the distinct integers in $S_{1} \cup S_{2}$ using $O(n \log n)$ time. For example, if $S_{1}=\{1,5,6,9,10\}$ and $S_{2}=\{5,7,10,13,15\}$, you should output: 1, 5, 6, 7, 9, 10, 13, 15.
Problem 2. Same problem as above. However, this time we assume that S_{1} and S_{2} have been sorted, i.e., each set is given in an array where its elements are in ascending order. Give an algorithm that runs in $O(n)$ time.

Problem 3. Let S_{1} and S_{2} be two sets of integers (they are not necessarily disjoint). We know that $\left|S_{1}\right|=\left|S_{2}\right|=n$ (i.e., each set has n integers). Each set is given in array where its elements are in ascending order. Design an algorithm to report $S_{1} \cap S_{2}$ in $O(n)$ time. For example, if $S_{1}=\{1,5,6,9,10\}$ and $S_{2}=\{5,7,10,13,15\}$, you should output: 5, 10.
Problem 4. Consider the array $A=(5,9,3,10,26,37,14,12)$. Suppose that we sort Q by the quick sort algorithm. What is the probability that the algorithm compares the numbers 3 and 37 ?

Problem 5. Let A be an array of 6 integers as follows: ($8,3,4,1,7,10$). Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain from 1 to 10 . Recall that the algorithm (as described in the class) generates an array B where each element is either 0 or 1. Give the content of B.

