CSCI2100: Quiz 2

Name:
Student ID:
Note: A multiple-choice question has only one correct answer unless otherwise stated.

Problem 1 (10\%). After applying the following operations to an empty stack:
push(35), push(36), push(43), push(8), pop, pop, push(51), pop
what is the content of the stack? Answer: [\square
\square
A. 35,36
B. 36,43
C. 35,8
D. 35,51

Answer: A
Problem 2 ($\mathbf{1 0 \%}$). After applying the following operations to an empty queue:
enqueue(35), enqueue(36), enqueue(43), enqueue(8), dequeue, dequeue, enqueue(51), dequeue
what is the content of the queue? Answer: []
A. 8,51
B. 36,43
C. 35,8
D. 35,51

Answer: A

Problem 3 (10\%). Identify the operations below that can be performed in $O(1)$ cost (including $O(1)$ expected cost). There is more than one correct choice; no marks are given unless you can identify all of them. Answer: []
A. Push an element into a stack.
B. Insert an element into a linked list.
C. Dequeue an element from a queue.
D. Determine whether the value 10 is in a hash table.

Answer: $A B C D$
Problem $4 \mathbf{(1 0 \%)}$. Which of the following are true? There is more than one correct choice; no marks are given unless you can identify all of them. Answer: []
A. Consider a data structure that supports a certain operation in $O(1)$ amortized time. Then, any sequence of n such operations requires $O(n)$ worst case time, regardless of the value of n.
B. Consider a data structure that supports a certain operation in $O(1)$ amortized time. But still, it is possible for the structure to take $O(n)$ time to process one operation, where n is the number of operations that have already been processed.
C. There is a hash function that can guarantee $O(1)$ expected dictionary search on all input sets.
D. In a tree, the number of internal nodes cannot exceed that of leaf nodes.

Answer: $A B$

Problem 5 ($\mathbf{1 0 \%}$). Consider $S=\{1,3,4,5,7,8,9,10,11,12,13,15\}$. We build a hash table on S with hash function $h(k)=1+k \bmod 4$. If we look up an element q in the hash table, which of the following value of q has the lowest look up cost? Answer: []
A. 24
B. 23
C. 22
D. 21

Answer: C

Problem 6 (20\%). Consider the hash function $h(k)=1+k \bmod 4$. Give a set S of 10 integers to meet both conditions below:

- If we build a hash table on S using $h(k)$, then all the integers of S fall in the same bucket (recall that a bucket contains all the elements of S having the same hash value).
- The aforementioned bucket is the one we probe in order to look for integer 35 .

Answer: $S=\{3,7,11,15,19,23,27,31,35,39\}$.
Problem $7 \mathbf{(3 0 \%)}$. Let S be a set of $n \geq 2$ distinct integers where n is a power of 2 . The set S is given in an array that has not been sorted. Give an algorithm to find the $\log _{2} n$ largest integers of S in $O(n \log \log n)$ time. For example, if $S=\{30,50,10,90,80,20,70,60\}$, then you should output $70,80,90$.

Note: by using k-selection, we can solve the problem in $O(n)$ expected time. However, here our $O(n \log \log n)$ time bound needs to hold deterministically. If you want to use a deterministic k-selection algorithm, you must describe the algorithm in full (because it has not been covered in this course). This problem admits an elegant solution that does not require k-selection.

Answer 1: Initialize an empty priority queue H (min-heap). Process each element $e \in S$ in turn as follows. First, insert e to H. Then, check if H has more than $\log _{2} n$ elements; if so, perform a delete-min (after which H will have exactly $\log _{2} n$ elements). After all the elements of S have been processed, report the elements of H in ascending order with $\log _{2} n$ delete-mins.

Answer 2: Construct a max-heap from S in $O(n)$ time. Then, perform $\log _{2} n$ delete-max operations and returned the elements found. The total cost is $O\left(n+\log ^{2} n\right)=O(n)$.

