CSCI2100 Quiz 1

Name:
Student ID:
Each of the following problems bears 10 marks. There is only one correct answer for each problem.

Problem 1. Which of the following is true? Answer: [
A. $\log _{2} n=\Omega(n)$.
B. $n=\Omega\left(\log _{2} n\right)$.

Answer: B
Problem 2. Which of the following is true? Answer:
A. $395 \sqrt{n}+29\left(\log _{2} n\right)^{5}+\frac{n^{0.501}}{\left(\log _{2} n\right)^{500}}=O(\sqrt{n})$.
B. $395 \sqrt{n}+29\left(\log _{2} n\right)^{5}+\frac{n^{0.501}}{\left(\log _{2} n\right)^{500}}=\Omega(\sqrt{n})$.
C. Neither of the above.

Answer: B

Problem 3. Which of the following is not an atomic operation of the RAM model? Answer: []
A. Calculate $a b$ where integers a, b are stored in registers.
B. Calculate a^{b} where integers a, b are stored in registers.
C. Compare the integers stored in two registers.
D. Write the content of register a into the memory cell whose address is stored in register b.

Answer: B
Problem 4. Which of the following is true? Answer: [
A. $n\left(\log _{2} n\right)^{2}=O\left(n \log _{200} n\right)$.
B. $n^{1.001} / \log _{2000} n=\Omega(n \log n)$.
C. $n=\Theta(n \log n)$.
D. $n^{0.001}=$ $O\left((\log n)^{95328}\right)$

Answer: B

Problem 5. Which of the following functions is not $O\left(n^{3.5}\right)$. Answer: []
A. $28532 \cdot n^{2}$
B. $\left(\log _{2} n\right)^{989}$
C. $\left(\log _{2} n\right)^{\log _{2} n}$
D. $2^{3 \log _{2} n}$

Answer: C
Problem 6. Which of the following functions is $O(n \log \sqrt{n})$. Answer: []
A. $n^{1.35} / \log ^{100000} n$
B. $8 n \log _{1.001} n$
C. $n \cdot\left(\log _{2} n\right)^{1.05}$
D. $(1.01)^{\sqrt{n}}$

Answer: B

Problem 7. Which of the following functions is $\Omega\left(n^{1.35}\right)$. Answer: $[$
$\begin{array}{llll}\text { A. } n^{1.35} / \log ^{100000} n & \text { B. } 8 n \log _{1.001} n & \text { C. } n \cdot\left(\log _{2} n\right)^{1.05} & \text { D. }(1.01)^{\sqrt{n}}\end{array}$

Answer: D

Problem 8. Which of the following functions is $\Theta(n \log n)$. Answer: [
A. $n^{1.35} / \log ^{100000} n$
B. $8 n \log _{1.001} n$
C. $n \cdot\left(\log _{2} n\right)^{1.05}$
D. $(1.01)^{\sqrt{n}}$

Answer: B
Problem 9. Is the following statement correct?
"Suppose that we have two algorithms $A 1, A 2$ for sorting n integers. Their worst case running times are $O(n \log n)$ and $O\left(n^{2}\right)$, respectively. But still, the cost of $A 1$ may be higher than that of $A 2$ on some inputs."
Answer: []
Answer: Yes.

- Please turn overleaf -

Problem 10. Prove or disprove: $n^{2}+\sqrt{n}=O\left(n^{3}\right)$.
Answer: It's correct. For a proof, it suffices to find constants c_{1}, c_{2} such that $n^{2}+\sqrt{n} \leq c_{2} \cdot n^{3}$ for all $n \geq c_{1}$. Setting $c_{1}=2$ and $c_{2}=1$ fulfills the purpose.

