Problem 1. Which of the following is true? Answer: []
A. \(\log_2 n = \Omega(n) \). \hspace{1cm} B. \(n = \Omega(\log_2 n) \).

Answer: \(B \)

Problem 2. Which of the following is true? Answer: []
A. \(395\sqrt{n} + 29(\log_2 n)^5 + \frac{n^{0.501}}{\log_2 n} = O(\sqrt{n}) \).
B. \(395\sqrt{n} + 29(\log_2 n)^5 + \frac{n^{0.501}}{\log_2 n} = \Omega(\sqrt{n}) \).
C. Neither of the above.

Answer: \(B \)

Problem 3. Which of the following is not an atomic operation of the RAM model? Answer: []
A. Calculate \(ab \) where integers \(a, b \) are stored in registers.
B. Calculate \(a^b \) where integers \(a, b \) are stored in registers.
C. Compare the integers stored in two registers.
D. Write the content of register \(a \) into the memory cell whose address is stored in register \(b \).

Answer: \(B \)

Problem 4. Which of the following is true? Answer: []
A. \(n(\log_2 n)^2 = O(n \log_{200} n) \).
B. \(n^{1.001} / \log_{2000} n = \Omega(n \log n) \).
C. \(n = \Theta(n \log n) \).
D. \(n^{0.001} = O((\log n)^{96328}) \).

Answer: \(B \)

Problem 5. Which of the following functions is not \(O(n^{3.5}) \). Answer: []
A. \(28532 \cdot n^2 \)
B. \((\log_2 n)^{989} \)
C. \((\log_2 n)^{\log_2 n} \)
D. \(2^{3 \log_2 n} \)

Answer: \(C \)

Problem 6. Which of the following functions is \(O(n \log \sqrt{n}) \). Answer: []
A. \(n^{1.35} / \log^{100000} n \)
B. \(8n \log_{1.001} n \)
C. \(n \cdot (\log_2 n)^{1.05} \)
D. \((1.01)^{\sqrt{n}} \)

Answer: \(B \)

Problem 7. Which of the following functions is \(\Omega(n^{1.35}) \). Answer: []
A. \(n^{1.35} / \log^{100000} n \)
B. \(8n \log_{1.001} n \)
C. \(n \cdot (\log_2 n)^{1.05} \)
D. \((1.01)^{\sqrt{n}} \)

Answer: \(D \)

Problem 8. Which of the following functions is \(\Theta(n \log n) \). Answer: []
A. \(n^{1.35} / \log^{100000} n \)
B. \(8n \log_{1.001} n \)
C. \(n \cdot (\log_2 n)^{1.05} \)
D. \((1.01)^{\sqrt{n}} \)
Problem 9. Is the following statement correct?
“Suppose that we have two algorithms A1, A2 for sorting n integers. Their worst case running times are $O(n \log n)$ and $O(n^2)$, respectively. But still, the cost of A1 may be higher than that of A2 on some inputs.”

Answer: Yes.
Problem 10. Prove or disprove: $n^2 + \sqrt{n} = O(n^3)$.

Answer: It’s correct. For a proof, it suffices to find constants c_1, c_2 such that $n^2 + \sqrt{n} \leq c_2 \cdot n^3$ for all $n \geq c_1$. Setting $c_1 = 2$ and $c_2 = 1$ fulfills the purpose.