CSCI2100: Midterm

Problem $1 \mathbf{(1 0 \%)}$. Prove: if $f(n)=O(n \log n)$ and $g(n)=O(\sqrt{n})$, then there are constants $\alpha>0$ and $\beta>0$ such that $f(n)+g(n) \leq \alpha \cdot n \log _{2} n$ for all $n \geq \beta$. Part of the proof has been written for you. You need to fill in the three blanks.

Proof. Since $f(n)=O(n \log n)$, there exist constants c_{1}, c_{2} such that, for all $n \geq c_{2}$, we have

$$
f(n) \leq c_{1} n \log _{2} n .
$$

Since $g(n)=O(\sqrt{n})$ there exist constants $c_{1}^{\prime}, c_{2}^{\prime}$ such that, for all $n \geq c_{2}^{\prime}$, we have

$$
g(n) \leq c_{1}^{\prime} \sqrt{n} \leq c_{1}^{\prime} n \log _{2} n .
$$

Thus, for n satisfying \qquad , it holds that

$$
f(n)+g(n) \leq\left(c_{1}+c_{1}^{\prime}\right) \cdot n \log _{2} n .
$$

Hence, setting $\alpha=$ \qquad and $\beta=$ \qquad completes the proof.

Write your answers in the answer book in this format: "Blank 1: ...", "Blank 2: ...", and "Blank 3: ...".

Solution. Black 1: $n \geq \max \left\{c_{2}, c_{2}^{\prime}\right\}$. Black 2: $\alpha=c_{1}+c_{1}^{\prime}$. Blank 3: $\beta=\max \left\{c_{2}, c_{2}^{\prime}\right\}$.
Problem 2 (5\%). Give a counterexample to disprove the following statement: if functions $f(n)=O(n \log n)$ and $g(n)=O(\sqrt{n})$, then $f(n)+g(n)=\Omega(n \log n)$.

Solution. $f(n)=g(n)=1$.
Problem $3 \mathbf{(1 0 \%)}$. Let S be a set of n integers, and k_{1}, k_{2} arbitrary integers satisfying $1 \leq k_{1} \leq$ $k_{2} \leq n$. Suppose that S is given in an array. Give an $O(n)$ expected time algorithm to report all the integers whose ranks in S are in the range $\left[k_{1}, k_{2}\right.$]. Recall that the rank of an integer v in S equals the number of integers in S that are at most v.

Solution. Apply the k-selection algorithm to find the integer $p_{1} \in S$ whose rank is k_{1}, and then apply the algorithm again to find the integer $p_{2} \in S$ whose rank is k_{2}. Finally, scan S to report every integer that falls in $\left[p_{1}, p_{2}\right]$.

Problem 4 ($\mathbf{1 0 \%}$). Let S_{1} and S_{2} be two sets of integers (they may not be disjoint) with $\left|S_{1}\right|=\left|S_{2}\right|=n$. We know that S_{1} and S_{2} have been sorted, i.e., each set is given in an array where its elements are in ascending order. Give an algorithm to compute $S_{1} \cup S_{2}$ in $O(n)$ time.

Solution. Let A_{1} (resp., A_{2}) be the array storing S_{1} (resp., S_{2}). Create an array A of size $2 n$ to contain the output. Set $i=j=1$. Repeat the following until $i>n$ or $j>n$:

- If $A_{1}[i]>A_{2}[j]$, append $A_{1}[i]$ to A and increase i by 1 .
- If $A_{1}[i]<A_{2}[j]$, append $A_{2}[j]$ to A and increase j by 1 .
- Otherwise, append $A_{1}[i]$ to A and increase both i and j by 1 .

Finally, if $i<n$ (resp., $j<n$), append the remaining elements of A_{1} (resp., A_{2}) to A.
Problem 5 (6\%). Suppose that we use quick sort to sort the array $A=(35,12,5,55,43,78,90,82)$. Remember that the algorithm first randomly picks a pivot element from A and then solves two subproblems recursively. Let us assume that the pivot is 35 . What are the input arrays of those two subproblems, respectively?

Solution. $(12,5),(55,43,78,90,82)$.
Problem $6 \mathbf{(6 \%)}$. Let A be the following array of 10 integers: $(8,5,6,2,12,1,10,17,11,9)$. Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain from 1 to 20 . Recall that the algorithm (as described in the class) generates an array B where each element is either 0 or 1 . Give the content of B.

Solution. $(1,1,0,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0)$.
Problem $7 \mathbf{(1 0 \%)}$. Let S be a set of n integers that have been sorted in an array. Give an algorithm that, given any integers x and y with $x \leq y$, finds the number of integers in S covered by the interval $[x, y]$. Your algorithm must finish in $O(\log n)$ time. For example, if $S=\{5,12,35,43,55,78,82,90\}$, your algorithm should output 2 if $x=30$ and $y=45$.

Solution. Perform binary search to find the successor of x in A (which is the smallest element in A larger than or equal to $x)$. Let i be the successor's position index (i.e., $A[i]$ is the successor). Perform binary search to find the predecessor of y in A (which is the largest element in A smaller than or equal to x). Let j be the predecessor's position index. Return $j-i+1$.

Problem $8 \mathbf{(3 0 \%)}$. Let S_{1} be a set of n integers that have been sorted in an array. Let S_{2} be another set of m integers that have not been sorted. Answer the following questions.

1. (8%) Give an algorithm to find $S_{1} \cap S_{2}$ in $O(m \log n)$ time.
2. (10\%) Give an algorithm to find $S_{1} \cap S_{2}$ in $O(n+m \log m)$ time.
3. (12%) Suppose that all the integers in S_{1} are in the domain from 1 to $100 n$ (whereas the domain for S_{2} is arbitrary). Give an algorithm to find $S_{1} \cap S_{2}$ in $O(n+m)$ time.

Solution.

1. Let A_{1} be the array storing S_{1}. For each integer $e \in S_{2}$, check whether $e \in S_{1}$ with binary search and, if so, output e. Each binary search $\operatorname{costs} O(\log n)$ time. Thus, the total cost is $O(m \log n)$.
2. Sort S_{2} in $O(m \log m)$ time; let A_{2} be the sorted array A_{2}. Then, we perform a synchronous scan over A_{1} and A_{2} to output $S_{1} \cap S_{2}$ as follows. First, set $i=1$ and $j=1$. Then, repeat the following until $i>\left|A_{1}\right|$ or $j>\left|A_{2}\right|:$ if $A_{1}[i]=A_{2}[j]$, output $A_{1}[i]$ and increase both i and j by one. If $A_{1}[i]>A_{2}[j]$, increase j by one; if $A_{1}[i]<A_{2}[j]$, increase i by one. The synchronous scan takes $O(m+n)$. So the overall cost is $O(n+m \log m)$.
3. Discard from S_{2} all the integers that are outside the range $[1,100 n]$. Use counting sort to sort (the remaining elements of) S_{2} in $O(m+100 n)=O(m+n)$ time. Then, perform a synchronous scan as described for Problem $8(2)$ to report $S_{1} \cap S_{2}$. The total cost is $O(m+n)$.

Problem 9 (13\%). Let A be an array of n distinct integers (not necessarily sorted). We denote the i-th number in A as $A[i]$, for $i \in[1, n]$. We call $A[i]$ a local maximum in any of the following scenarios:

- $i=1$ and $A[1]>A[2]$;
- $i=n$ and $A[n]>A[n-1]$;
- $i \in[2, n-1], A[i]>A[i+1]$, and $A[i]>A[i-1]$.

For example, if $A=(35,12,5,55,43,78,90,82)$, then 35,55 , and 90 are all the local maxima. Design an algorithm to find an arbitrary local maximum in $O(\log n)$ time.

Solution. Set $k=\lfloor n / 2\rfloor$. In $O(1)$ time, check if $A[k]$ is a local maximum. If not, then there are three possibilities:

1. $A[k-1]<A[k]<A[k+1]$;
2. $A[k-1]>A[k]>A[k+1]$;
3. $A[k]<A[k-1]$ and $A[k]<A[k+1]$.

In the first case, recursively look for a local maximum in the subarray $A[k+1: n]$ (i.e., everything from $A[k+1]$ to $A[n])$. In the second case, recurse in the subarray $A[1: k-1]$. In the third case, you can recurse either in $A[1: k-1]$ or $[k+1: n]$. If $f(n)$ is the running time on an input of size n, we have $f(n) \leq O(1)+f(\lceil n / 2\rceil)$, which yields $f(n)=O(\log n)$.

