
CSCI2100: Midterm

Problem 1 (10%). Prove: if f(n) = O(n log n) and g(n) = O(
√
n), then there are constants α > 0

and β > 0 such that f(n) + g(n) ≤ α · n log2 n for all n ≥ β. Part of the proof has been written for
you. You need to fill in the three blanks.

Proof. Since f(n) = O(n log n), there exist constants c1, c2 such that, for all n ≥ c2, we have

f(n) ≤ c1n log2 n.

Since g(n) = O(
√
n) there exist constants c′1, c

′
2 such that, for all n ≥ c′2, we have

g(n) ≤ c′1
√
n ≤ c′1n log2 n.

Thus, for n satisfying , it holds that

f(n) + g(n) ≤ (c1 + c′1) · n log2 n.

Hence, setting α = and β = completes the proof.

Write your answers in the answer book in this format: “Blank 1: ...”, “Blank 2: ...”, and “Blank 3:
...”.

Solution. Black 1: n ≥ max{c2, c′2}. Black 2: α = c1 + c′1. Blank 3: β = max{c2, c′2}.

Problem 2 (5%). Give a counterexample to disprove the following statement: if functions
f(n) = O(n log n) and g(n) = O(

√
n), then f(n) + g(n) = Ω(n log n).

Solution. f(n) = g(n) = 1.

Problem 3 (10%). Let S be a set of n integers, and k1, k2 arbitrary integers satisfying 1 ≤ k1 ≤
k2 ≤ n. Suppose that S is given in an array. Give an O(n) expected time algorithm to report all
the integers whose ranks in S are in the range [k1, k2]. Recall that the rank of an integer v in S
equals the number of integers in S that are at most v.

Solution. Apply the k-selection algorithm to find the integer p1 ∈ S whose rank is k1, and then
apply the algorithm again to find the integer p2 ∈ S whose rank is k2. Finally, scan S to report
every integer that falls in [p1, p2].

Problem 4 (10%). Let S1 and S2 be two sets of integers (they may not be disjoint) with
|S1| = |S2| = n. We know that S1 and S2 have been sorted, i.e., each set is given in an array where
its elements are in ascending order. Give an algorithm to compute S1 ∪ S2 in O(n) time.

Solution. Let A1 (resp., A2) be the array storing S1 (resp., S2). Create an array A of size 2n to
contain the output. Set i = j = 1. Repeat the following until i > n or j > n:

• If A1[i] > A2[j], append A1[i] to A and increase i by 1.

• If A1[i] < A2[j], append A2[j] to A and increase j by 1.

• Otherwise, append A1[i] to A and increase both i and j by 1.

Finally, if i < n (resp., j < n), append the remaining elements of A1(resp., A2) to A.

Problem 5 (6%). Suppose that we use quick sort to sort the array A = (35, 12, 5, 55, 43, 78, 90, 82).
Remember that the algorithm first randomly picks a pivot element from A and then solves two
subproblems recursively. Let us assume that the pivot is 35. What are the input arrays of those
two subproblems, respectively?

Solution. (12, 5), (55, 43, 78, 90, 82).

Problem 6 (6%). Let A be the following array of 10 integers: (8, 5, 6, 2, 12, 1, 10, 17, 11, 9).
Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain
from 1 to 20. Recall that the algorithm (as described in the class) generates an array B where each
element is either 0 or 1. Give the content of B.

Solution. (1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0).

Problem 7 (10%). Let S be a set of n integers that have been sorted in an array. Give an algorithm
that, given any integers x and y with x ≤ y, finds the number of integers in S covered by the interval
[x, y]. Your algorithm must finish in O(log n) time. For example, if S = {5, 12, 35, 43, 55, 78, 82, 90},
your algorithm should output 2 if x = 30 and y = 45.

Solution. Perform binary search to find the successor of x in A (which is the smallest element in
A larger than or equal to x). Let i be the successor’s position index (i.e., A[i] is the successor).
Perform binary search to find the predecessor of y in A (which is the largest element in A smaller
than or equal to x). Let j be the predecessor’s position index. Return j − i+ 1.

Problem 8 (30%). Let S1 be a set of n integers that have been sorted in an array. Let S2 be
another set of m integers that have not been sorted. Answer the following questions.

1. (8%) Give an algorithm to find S1 ∩ S2 in O(m log n) time.

2. (10%) Give an algorithm to find S1 ∩ S2 in O(n+m logm) time.

3. (12%) Suppose that all the integers in S1 are in the domain from 1 to 100n (whereas the
domain for S2 is arbitrary). Give an algorithm to find S1 ∩ S2 in O(n+m) time.

Solution.

1. Let A1 be the array storing S1. For each integer e ∈ S2, check whether e ∈ S1 with binary
search and, if so, output e. Each binary search costs O(log n) time. Thus, the total cost is
O(m log n).

2. Sort S2 in O(m logm) time; let A2 be the sorted array A2. Then, we perform a synchronous
scan over A1 and A2 to output S1 ∩S2 as follows. First, set i = 1 and j = 1. Then, repeat the
following until i > |A1| or j > |A2|: if A1[i] = A2[j], output A1[i] and increase both i and j by
one. If A1[i] > A2[j], increase j by one; if A1[i] < A2[j], increase i by one. The synchronous
scan takes O(m+ n). So the overall cost is O(n+m logm).

3. Discard from S2 all the integers that are outside the range [1, 100n]. Use counting sort to
sort (the remaining elements of) S2 in O(m + 100n) = O(m + n) time. Then, perform a
synchronous scan as described for Problem 8(2) to report S1 ∩ S2. The total cost is O(m+ n).

2

Problem 9 (13%). Let A be an array of n distinct integers (not necessarily sorted). We denote
the i-th number in A as A[i], for i ∈ [1, n]. We call A[i] a local maximum in any of the following
scenarios:

• i = 1 and A[1] > A[2];

• i = n and A[n] > A[n− 1];

• i ∈ [2, n− 1], A[i] > A[i+ 1], and A[i] > A[i− 1].

For example, if A = (35, 12, 5, 55, 43, 78, 90, 82), then 35, 55, and 90 are all the local maxima. Design
an algorithm to find an arbitrary local maximum in O(log n) time.

Solution. Set k = ⌊n/2⌋. In O(1) time, check if A[k] is a local maximum. If not, then there are
three possibilities:

1. A[k − 1] < A[k] < A[k + 1];

2. A[k − 1] > A[k] > A[k + 1];

3. A[k] < A[k − 1] and A[k] < A[k + 1].

In the first case, recursively look for a local maximum in the subarray A[k + 1 : n] (i.e., everything
from A[k + 1] to A[n]). In the second case, recurse in the subarray A[1 : k − 1]. In the third case,
you can recurse either in A[1 : k− 1] or [k + 1 : n]. If f(n) is the running time on an input of size n,
we have f(n) ≤ O(1) + f(⌈n/2⌉), which yields f(n) = O(log n).

3

