CSCI2100: Midterm

Problem 1 (10%). Prove: if \(f(n) = O(n \log n) \) and \(g(n) = O(\sqrt{n}) \), then there are constants \(\alpha > 0 \) and \(\beta > 0 \) such that \(f(n) + g(n) \leq \alpha \cdot n \log_2 n \) for all \(n \geq \beta \). Part of the proof has been written for you. You need to fill in the three blanks.

Proof. Since \(f(n) = O(n \log n) \), there exist constants \(c_1, c_2 \) such that, for all \(n \geq c_2 \), we have

\[
f(n) \leq c_1 n \log_2 n.
\]

Since \(g(n) = O(\sqrt{n}) \) there exist constants \(c_1', c_2' \) such that, for all \(n \geq c_2' \), we have

\[
g(n) \leq c_1' \sqrt{n} \leq c_1' n \log_2 n.
\]

Thus, for \(n \) satisfying __________, it holds that

\[
f(n) + g(n) \leq (c_1 + c_1') \cdot n \log_2 n.
\]

Hence, setting \(\alpha = __________ \) and \(\beta = __________ \) completes the proof. \(\square \)

Solution. Black 1: \(n \geq \max\{c_2, c_2'\} \). Black 2: \(\alpha = c_1 + c_1' \). Blank 3: \(\beta = \max\{c_2, c_2'\} \).

Problem 2 (5%). Give a counterexample to disprove the following statement: if functions \(f(n) = O(n \log n) \) and \(g(n) = O(\sqrt{n}) \), then \(f(n) + g(n) = \Omega(n \log n) \).

Solution. \(f(n) = g(n) = 1 \).

Problem 3 (10%). Let \(S \) be a set of \(n \) integers, and \(k_1, k_2 \) arbitrary integers satisfying \(1 \leq k_1 \leq k_2 \leq n \). Suppose that \(S \) is given in an array. Give an \(O(n) \) expected time algorithm to report all the integers whose ranks in \(S \) are in the range \([k_1, k_2]\). Recall that the rank of an integer \(v \) in \(S \) equals the number of integers in \(S \) that are at most \(v \).

Solution. Apply the \(k \)-selection algorithm to find the integer \(p_1 \in S \) whose rank is \(k_1 \), and then apply the algorithm again to find the integer \(p_2 \in S \) whose rank is \(k_2 \). Finally, scan \(S \) to report every integer that falls in \([p_1, p_2]\).

Problem 4 (10%). Let \(S_1 \) and \(S_2 \) be two sets of integers (they may not be disjoint) with \(|S_1| = |S_2| = n \). We know that \(S_1 \) and \(S_2 \) have been sorted, i.e., each set is given in an array where its elements are in ascending order. Give an algorithm to compute \(S_1 \cup S_2 \) in \(O(n) \) time.

Solution. Let \(A_1 \) (resp., \(A_2 \)) be the array storing \(S_1 \) (resp., \(S_2 \)). Create an array \(A \) of size \(2n \) to contain the output. Set \(i = j = 1 \). Repeat the following until \(i > n \) or \(j > n \):

- If \(A_1[i] > A_2[j] \), append \(A_1[i] \) to \(A \) and increase \(i \) by 1.

- If \(A_1[i] < A_2[j] \), append \(A_2[j] \) to \(A \) and increase \(j \) by 1.

- Otherwise, append \(A_1[i] \) to \(A \) and increase both \(i \) and \(j \) by 1.
Finally, if \(i < n \) (resp., \(j < n \)), append the remaining elements of \(A_1 \) (resp., \(A_2 \)) to \(A \).

Problem 5 (6%). Suppose that we use quick sort to sort the array \(A = (35, 12, 5, 55, 43, 78, 90, 82) \). Remember that the algorithm first randomly picks a pivot element from \(A \) and then solves two subproblems recursively. Let us assume that the pivot is 35. What are the input arrays of those two subproblems, respectively?

Solution. \((12, 5) \), \((55, 43, 78, 90, 82)\).

Problem 6 (6%). Let \(A \) be the following array of 10 integers: \((8, 5, 6, 2, 12, 1, 10, 17, 11, 9)\). Suppose that we use counting sort to sort the array, knowing that all the integers are in the domain from 1 to 20. Recall that the algorithm (as described in the class) generates an array \(B \) where each element is either 0 or 1. Give the content of \(B \).

Solution. \((1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0)\).

Problem 7 (10%). Let \(S \) be a set of \(n \) integers that have been sorted in an array. Give an algorithm that, given any integers \(x \) and \(y \) with \(x \leq y \), finds the number of integers in \(S \) covered by the interval \([x, y]\). Your algorithm must finish in \(O(\log n) \) time. For example, if \(S = \{5, 12, 35, 43, 55, 78, 82, 90\} \), your algorithm should output 2 if \(x = 30 \) and \(y = 45 \).

Solution. Perform binary search to find the successor of \(x \) in \(A \) (which is the smallest element in \(A \) larger than or equal to \(x \)). Let \(i \) be the successor’s position index (i.e., \(A[i] \) is the successor). Perform binary search to find the predecessor of \(y \) in \(A \) (which is the largest element in \(A \) smaller than or equal to \(x \)). Let \(j \) be the predecessor’s position index. Return \(j - i + 1 \).

Problem 8 (30%). Let \(S_1 \) be a set of \(n \) integers that have been sorted in an array. Let \(S_2 \) be another set of \(m \) integers that have not been sorted. Answer the following questions.

1. (8%) Give an algorithm to find \(S_1 \cap S_2 \) in \(O(m \log n) \) time.

2. (10%) Give an algorithm to find \(S_1 \cap S_2 \) in \(O(n + m \log m) \) time.

3. (12%) Suppose that all the integers in \(S_1 \) are in the domain from 1 to 100\(n \) (whereas the domain for \(S_2 \) is arbitrary). Give an algorithm to find \(S_1 \cap S_2 \) in \(O(n + m) \) time.

Solution.

1. Let \(A_1 \) be the array storing \(S_1 \). For each integer \(e \in S_2 \), check whether \(e \in S_1 \) with binary search and, if so, output \(e \). Each binary search costs \(O(\log n) \) time. Thus, the total cost is \(O(m \log n) \).

2. Sort \(S_2 \) in \(O(m \log m) \) time; let \(A_2 \) be the sorted array \(A_2 \). Then, we perform a synchronous scan over \(A_1 \) and \(A_2 \) to output \(S_1 \cap S_2 \) as follows. First, set \(i = 1 \) and \(j = 1 \). Then, repeat the following until \(i > \lvert A_1 \rvert \) or \(j > \lvert A_2 \rvert \): if \(A_1[i] = A_2[j] \), output \(A_1[i] \) and increase both \(i \) and \(j \) by one. If \(A_1[i] > A_2[j] \), increase \(j \) by one; if \(A_1[i] < A_2[j] \), increase \(i \) by one. The synchronous scan takes \(O(m + n) \). So the overall cost is \(O(n + m \log m) \).

3. Discard from \(S_2 \) all the integers that are outside the range \([1, 100n]\). Use counting sort to sort (the remaining elements of) \(S_2 \) in \(O(m + 100n) = O(m + n) \) time. Then, perform a synchronous scan as described for Problem 8(2) to report \(S_1 \cap S_2 \). The total cost is \(O(m + n) \).
Problem 9 (13%). Let A be an array of n distinct integers (not necessarily sorted). We denote the i-th number in A as $A[i]$, for $i \in [1,n]$. We call $A[i]$ a local maximum in any of the following scenarios:

For example, if $A = (35, 12, 5, 55, 43, 78, 90, 82)$, then 35, 55, and 90 are all the local maxima. Design an algorithm to find an arbitrary local maximum in $O(\log n)$ time.

Solution. Set $k = \lfloor n/2 \rfloor$. In $O(1)$ time, check if $A[k]$ is a local maximum. If not, then there are three possibilities:

In the first case, recursively look for a local maximum in the subarray $A[k+1:n]$ (i.e., everything from $A[k+1]$ to $A[n]$). In the second case, recurse in the subarray $A[1:k-1]$. In the third case, you can recurse either in $A[1:k-1]$ or $[k+1:n]$. If $f(n)$ is the running time on an input of size n, we have $f(n) \leq O(1) + f(\lceil n/2 \rceil)$, which yields $f(n) = O(\log n)$.
