Single Source Shortest Paths with Positive Weights

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
In this lecture, we will revisit the **single source shortest path** (SSSP) problem. Recall that we have already learned that BFS solves the problem efficiently when all the edges have the **same** weight. Today, we will see how to solve the problem in a more general situation where the edges can have arbitrary positive weights.
Weighted Graphs

Let \(G = (V, E) \) be a directed graph. Let \(w \) be a function that maps each edge in \(E \) to a positive integer value. Specifically, for each \(e \in E \), \(w(e) \) is a positive integer value, which we call the weight of \(e \).

A directed weighted graph is defined as the pair \((G, w)\).
The integer on each edge indicates its weight. For example, $w(d, g) = 1$, $w(g, f) = 2$, and $w(c, e) = 10$.
Consider a directed weighted graph defined by a directed graph \(G = (V, E) \) and function \(w \).

Consider a path in \(G \): \((v_1, v_2), (v_2, v_3), \ldots, (v_\ell, v_{\ell+1})\), for some integer \(\ell \geq 1 \). We define the length of the path as

\[
\sum_{i=1}^{\ell} w(v_i, v_{i+1}).
\]

Recall that we may also denote the path as \(v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_{\ell+1} \).

Given two vertices \(u, v \in V \), a shortest path from \(u \) to \(v \) is a path from \(u \) to \(v \) that has the minimum length among all the paths from \(u \) to \(v \).

If \(v \) is unreachable from \(u \), then the shortest path distance from \(u \) to \(v \) is \(\infty \).
Example

The path $c \rightarrow e$ has length 10.

The path $c \rightarrow d \rightarrow g \rightarrow f \rightarrow e$ has length 6.

The first path is a shortest path from c to e.
Single Source Shortest Path (SSSP) with Positive Weights

Let \((G, w)\) with \(G = (V, E)\) be a directed weighted graph, where \(w\) maps every edge of \(E\) to a positive value.

Given a vertex \(s\) in \(V\), the goal of the **SSSP problem** is to find, for every other vertex \(t \in V \setminus \{s\}\), a shortest path from \(s\) to \(t\), unless \(t\) is unreachable from \(s\).
Next, we will first explain the Dijkstra’s algorithm for solving the SSSP problem, which outputs a **shortest path tree** that encodes all the shortest paths from the source vertex s.
The Edge Relaxation Idea

For every vertex $v \in V$, we will — at all times — maintain a value $dist(v)$ that represents the length of the shortest path from s to v found so far.

At the end of the algorithm, we will ensure that every $dist(v)$ equals the precise shortest path distance from s to v.

A core operation in our algorithm is called edge relaxation:

- Given an edge (u, v), we relax it as follows:
 - If $dist(v) < dist(u) + w(u, v)$, do nothing;
 - Otherwise, reduce $dist(v)$ to $dist(u) + w(u, v)$.
Dijkstra’s Algorithm

1. Set $\text{parent}(v) = \text{nil}$ for all vertices $v \in V$
2. Set $\text{dist}(s) = 0$, and $\text{dist}(v) = \infty$ for all other vertices $v \in V$
3. Set $S = V$
4. Repeat the following until S is empty:
 5.1 Remove from S the vertex u with the smallest $\text{dist}(u)$.
 /* next we relax all the outgoing edges of u */
 5.2 for every outgoing edge (u, v) of u
 5.2.1 if $\text{dist}(v) > \text{dist}(u) + w(u, v)$ then
 set $\text{dist}(v) = \text{dist}(u) + w(u, v)$, and $\text{parent}(v) = u$
Example

Suppose that the source vertex is c.

\[
S = \{a, b, c, d, e, f, g, h, i\}.
\]
Example

Relax the out-going edges of c (because $\text{dist}(c)$ is the smallest in S):

$$\begin{array}{|c|c|c|}
\hline
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & \infty & \text{nil} \\
b & \infty & \text{nil} \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 10 & c \\
f & \infty & \text{nil} \\
g & \infty & \text{nil} \\
h & \infty & \text{nil} \\
i & \infty & \text{nil} \\
\hline
\end{array}$$

$S = \{a, b, d, e, f, g, h, i\}$. Note that c has been removed!
Example

Relax the out-going edges of d (because $\text{dist}(d)$ is the smallest in S):

$$
S = \{a, b, e, f, g, h, i\}.
$$
Example

Relax the out-going edges of g:

\[
S = \{a, b, e, f, h, i\}.
\]
Example

Relax the out-going edges of i:

\[S = \{a, b, e, f, h\}. \]

\[S = \{a, b, e, f, h\}. \]
Example

Relax the out-going edges of f:

$$
\begin{array}{cccc}
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
 a & 8 & d \\
b & \infty & \text{nil} \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 6 & f \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\end{array}
$$

$S = \{a, b, e, h\}$.
Example

Relax the out-going edges of e:

$S = \{a, b, h\}$.
Example

Relax the out-going edges of a:

$S = \{b, h\}$.

<table>
<thead>
<tr>
<th>vertex v</th>
<th>$dist(v)$</th>
<th>$parent(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>9</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>nil</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>e</td>
<td>6</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>5</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>h</td>
<td>∞</td>
<td>nil</td>
</tr>
<tr>
<td>i</td>
<td>4</td>
<td>g</td>
</tr>
</tbody>
</table>
Example

Relax the out-going edges of b:

\[S = \{ h \}. \]
Example

Relax the out-going edges of \(h \):

\[
\begin{array}{c|c|c}
\text{vertex } v & \text{dist}(v) & \text{parent}(v) \\
\hline
a & 8 & d \\
b & 9 & a \\
c & 0 & \text{nil} \\
d & 2 & c \\
e & 6 & f \\
f & 5 & g \\
g & 3 & d \\
h & \infty & \text{nil} \\
i & 4 & g \\
\end{array}
\]

\(S = \{ \} \).

All the shortest path distances are now final.
Constructing the Shortest Path Tree

For every vertex \(v \), if \(u = \text{parent}(v) \) is not nil, then make \(v \) a child of \(u \).

Example
Running Time

It will be left as an exercise for you to implement Dijkstra’s algorithm in $O(|V| + |E| \cdot \log |V|)$ time. You have already learned all the data structures for this purpose. Now it is time to practice using them.
Correctness

Lemma: When vertex v is removed from S, $\text{dist}(v)$ equals precisely the shortest path distance — denoted as $\text{spdist}(v)$ — from s to v.

The correctness of Dijkstra’s algorithm follows from the lemma.
Correctness

We will prove the claim by induction on the sequence of vertices removed.

- Base case:
 This is obviously true for the first vertex removed, which is s itself with $dist(s) = 0$.

- Inductive:
 Assume the claim is true with respect to all the vertices already removed. Let v be the next node to be removed. We need to prove $dist(v) = spdist(v)$.
Correctness

Consider an arbitrary shortest path π from s to v. Let u be the vertex right before v on π.

Claim: u must have been removed from S.

Our target lemma follows from the above claim because, by our inductive assumption, $\text{dist}(u) = \text{spdist}(u)$ when u was removed. Then, the algorithm relaxed the edge (u, v), which must have set $\text{dist}(v) = \text{spdist}(u) + w(u, v) = \text{spdist}(v)$.
Stronger claim: All the nodes on π from s to u must have been removed.
Correctness

We will prove the stronger claim by contradiction.

Suppose the statement is not true. When \(v \) is to be removed from \(S \), another vertex on \(\pi \) — let it be \(v' \) — still remains in \(S \). Define \(p \) as the vertex right before \(v' \) on \(\pi \).
Correctness

By the inductive assumption, $\text{dist}(p) = \text{spdist}(p)$ when p was removed. Hence, after relaxing the edge (p, v'), we have $\text{dist}(v') = \text{spdist}(p) + w(p, v') = \text{spdist}(v')$.

But this means $\text{dist}(v') = \text{spdist}(v') < \text{spdist}(v) \leq \text{dist}(v)$!

Hence, v' should be the next vertex to be removed from S, contradicting the definition of v.

Yufei Tao

Single Source Shortest Paths with Positive Weights