Depth First Search

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

ヨート **Depth First Search**

э

1/37

(日)

Today, we will discuss the **depth first search** (DFS) algorithm, which is an elegant algorithm for solving many non-trivial problems. In this lecture, we will see one such problem: **cycle detection**. We will assume directed graphs because the extension to undirected graphs is straightforward.

2/37

イロト イポト イラト イラト

Let G = (V, E) be a directed graph.

Recall:

A path in G is a sequence of edges $(v_1, v_2), (v_2, v_3), ..., (v_{\ell}, v_{\ell+1})$, for some integer $\ell \geq 1$. We may also denote the path as $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$.

We now define:

A path $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\ell+1}$ is called a cycle if $v_{\ell+1} = v_1$.

・ロト ・同ト ・ヨト ・ヨト

э.

A cycle: $d \to g \to f \to e \to d$. Another one: $d \to g \to i \to f \to e \to d$.

Depth First Search

æ

4/37

・ロト ・四ト ・ヨト ・ヨト

Directed Acyclic/Cyclic Graphs

If a directed graph contains no cycles, we say that it is a **directed acyclic graph** (DAG). Otherwise, *G* is **cyclic**.

The Cycle Detection Problem

Let G = (V, E) be a directed graph. Determine whether it is a DAG.

э

6/37

イロト イボト イヨト イヨト

Next, we will describe the **depth first search** (DFS) algorithm to solve the problem in O(|V| + |E|) time, which is optimal (because any algorithm must at least see every vertex and every edge once in the worst case).

DFS outputs a tree, called the **DFS-tree**, which allows us to decide whether the input graph is a DAG.

At the beginning, color all vertices in the graph white and create an empty DFS tree T.

Create a stack S. Pick an arbitrary vertex v. Push v into S, and color it gray (which means "in the stack"). Make v the root of T.

8/37

・ロト ・同ト ・ヨト ・ヨト

Example

Suppose that we start from *a*.

 $\overset{\rm DFS \ tree}{a}$

S = (a).

æ

9/37

イロト イヨト イモト イモト

Repeat the following until S is empty.

- Let v be the vertex that currently tops the stack S (do not remove v from S).
- 2 Does v still have a white out-neighbor?
 - 2.1 If so, let it be *u*.
 - Push *u* into *S*, and color *u* gray.
 - Make u a child of v in the DFS-tree T.
 - 2.2 Otherwise, pop v from S and color it **black** (meaning v is done).

If there are still white vertices, repeat the above by **restarting** from an arbitrary white vertex v', creating a new DFS-tree rooted at v'.

Top of stack: *a*, which has white out-neighbors b, d. Suppose we access *b* first. Push *b* into *S*.

S = (a, b).

11/37

-

After pushing c into S:

$$S = (a, b, c).$$

Yufei Tao

Depth First Search

æ

12/37

< ロ > < 部 > < き > < き >

Now c tops the stack. It has white out-neighbors d and e. Suppose we visit d first. Push d into S.

S = (a, b, c, d).

13/37

A ₽

After pushing g into S:

$$S = (a, b, c, d, g).$$

Yufei Tao

Depth First Search

æ

14/37

< ロ > < 部 > < き > < き >

Suppose we visit the (white) out-neighbor f of g first. Push f into S

S = (a, b, c, d, g, f).

15/37

< A >

After pushing *e* into *S*:

S = (a, b, c, d, g, f, e).

э

16/37

< /□ > < □

e has no white out-neighbors. So pop it from S and color it black. Similarly, f has no white out-neighbors. Pop it from S and color it black.

$$S = (a, b, c, d, g).$$

Yufei Tao

Now g tops the stack again. It still has a white out-neighbor i. So, push i into S.

$$S = (a, b, c, d, g, i).$$

Yufei Tao

< □ > < □

After popping i, g, d, c, b, a:

S = ().

э

19/37

e

(日)

Now there is still a white vertex h. So we perform another DFS starting from h.

$$S = (h).$$

Yufei Tao

э

Pop *h*. The end.

S = ().

Note that we have created a **DFS-forest**, which consists of 2 DFS-trees.

	_			_	 21/3/
Yufei Tao		Dept	h First	Search	

-

The fact below follows directly from the way DFS runs:

Lemma (the Ancestor-Descendent Lemma): Let u and v be two distinct vertices in G. Then, u is an ancestor of v in the DFS-forest **if and only if** the following holds: u is already in the stack when v enters the stack.

22/37

A (1) > (1) > (1)

DFS can be implemented efficiently as follows.

- Store G in the adjacency list format.
- For every vertex *v*, remember which is the next out-neighbor to explore.
- O(|V| + |E|) stack operations.
- Use an array to remember the colors of all vertices.

The total running time is O(|V| + |E|).

23/37

・ 同 ト ・ ヨ ト ・ ヨ ト

Next, we will see how to use the DFS forest to detect cycles.

э

<ロ> <同> <同> <同> < 同> < 同>

Edge Classification

Suppose that we have already built a DFS-forest T.

Let (u, v) be an edge in G (remember that the edge is directed from u to v). It can be classified into

- **(**) forward edge if u is a proper ancestor of v in a DFS-tree of T;
- **2** back edge if u is a descendant of v in a DFS-tree of T;
- **orcoss edge** if neither of the above applies.

25/37

(4月) (1日) (1日)

- Forward edges:
 (a, b), (a, d), (b, c), (c, d), (c, e), (d, g), (g, f), (g, i), (f, e).
- Back edge: (e, d).
- Cross edges: (*i*, *f*), (*h*, *d*), (*h*, *g*).

26/37

< 🗇 🕨

Theorem: Let T be an **arbitrary** DFS-forest. G contains a cycle **if and only if** there is a back edge with respect to T.

The "if-direction" is obvious. Proving the "only-if direction" is more difficult and will be done later.

27/37

- A - E - M-

Issue: How to test the type of an edge?

We can do so in constant time. For this purpose, we need to slightly augment the DFS-forest by remembering when each vertex enters and leaves the stack.

28/37

< 同 ▶ < 三 ▶

Maintain a counter c, which is initially 0. Every time we perform a push or pop, increment c by 1.

For every vertex v, define:

Yufei Tao

- its discovery time d-tm(v) as the value of c right after v is pushed into the stack;
- its finish time *f*-*tm*(*v*) as the value of *c* right after *v* is popped from the stack.

Define the **time interval** of v as I(v) = [d-tm(v), f-tm(v)].

It is straightforward to obtain I(v) for all $v \in V$ by paying O(|V|) extra time on top of DFS's running time. (Think: Why?)

イロト イポト イヨト イヨト

•
$$I(a) = [1, 16]$$

• $I(b) = [2, 15]$
• $I(c) = [3, 14]$
• $I(d) = [4, 13]$
• $I(g) = [5, 12]$
• $I(f) = [6, 9]$
• $I(e) = [7, 8]$
• $I(i) = [10, 11]$
• $I(h) = [17, 18]$

30/37

・ロト・日本・日本・日本・日本・日本

The fact below follows directly from the stack's first-in-last-out property:

Lemma (the No-Partial-Overlap Lemma): For any two vertices u and v in G, their time intervals must satisfy one of the following:

- I(u) contains I(v);
- I(v) contains I(u);
- they are disjoint.

Combining the ancestor-descendant lemma with the no-partial-overlap lemma gives:

Theorem (the Parenthesis Theorem): Let u and v be two distinct vertices in G. Then:

- I(u) contains I(v) if and only if u is an ancestor of v in the DFS-forest.
- I(v) contains I(u) if and only if v is an ancestor of u in the DFS-forest.
- I(u) and I(v) are disjoint **if and only if** neither u nor v is an ancestor of the other.

32/37

We can now detect whether G has a cycle:

```
for every edge (u, v) in G do
    if I(v) contains I(u) then
        return "cycle exists"
return "no cycle"
```

Only O(|E|) extra time is needed.

We now conclude that the cycle detection problem can be solved in O(|V| + |E|) time.

33/37

・ 同 ト ・ ヨ ト ・ ヨ ト

It remains to prove the cycle theorem. In fact, it is a corollary of the **white path theorem**, another important theorem about DFS.

White Path Theorem

Theorem: Let u be a vertex in G. Consider the moment right before u enters the stack in the DFS algorithm. Then, a vertex v becomes a proper descendant of u in the DFS-forest **if and only** if the following is true at this moment:

• there is a path from *u* to *v* including only white vertices.

The proof will be left as a exercise and discussed in the tutorial.

Example

Consider the moment in our previous example right before g just entered the stack. S = (a, b, c, d).

We can see that g can reach f, e, and i via white paths. Therefore, f, e, and i are all proper descendants of g in the DFS-forest; and g has no other descendants.

Proving the Only-If Direction of the Cycle Theorem

We will now prove that if G has a cycle, then there must be a back edge in the DFS-forest.

Suppose that the cycle is $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_\ell \rightarrow v_1$.

Let v_i , for some $i \in [1, \ell]$, be the vertex in the cycle that is the first to enter the stack. Hence, at the moment right before v_i enters the stack, v_i can reach all the other vertices in the cycle via white paths. By the white path theorem, all the other vertices in the cycle must be proper descendants of v_i in the DFS-forest. Hence, the edge pointing to v_i in the cycle must be a back edge.