Depth First Search

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Today, we will discuss the depth first search (DFS) algorithm, which is an elegant algorithm for solving many non-trivial problems. In this lecture, we will see one such problem: cycle detection. We will assume directed graphs because the extension to undirected graphs is straightforward.
Paths and Cycles

Let $G = (V, E)$ be a directed graph.

Recall:

A **path** in G is a sequence of edges $(v_1, v_2), (v_2, v_3), \ldots, (v_\ell, v_{\ell+1})$, for some integer $\ell \geq 1$. We may also denote the path as $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\ell+1}$.

We now define:

A path $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\ell+1}$ is called a **cycle** if $v_{\ell+1} = v_1$.
Example

A cycle: \(d \rightarrow g \rightarrow f \rightarrow e \rightarrow d \).
Another one: \(d \rightarrow g \rightarrow i \rightarrow f \rightarrow e \rightarrow d \).
Directed Acyclic/Cyclic Graphs

If a directed graph contains no cycles, we say that it is a **directed acyclic graph** (DAG). Otherwise, G is **cyclic**.

Example

![Diagram](image)

Cyclic

DAG
The Cycle Detection Problem

Let $G = (V, E)$ be a directed graph. Determine whether it is a DAG.
Next, we will describe the **depth first search** (DFS) algorithm to solve the problem in $O(|V| + |E|)$ time, which is optimal (because any algorithm must at least see every vertex and every edge once in the worst case).

DFS outputs a tree, called the **DFS-tree**, which allows us to decide whether the input graph is a DAG.
At the beginning, color all vertices in the graph \textcolor{white}{white} and create an empty DFS tree \(T \).

Create a stack \(S \). Pick an arbitrary vertex \(v \). Push \(v \) into \(S \), and color it \textcolor{gray}{gray} (which means “in the stack”). Make \(v \) the root of \(T \).
Example

Suppose that we start from a.

$S = (a)$.

DFS tree
Repeat the following until S is empty.

1. Let v be the vertex that currently tops the stack S (do not remove v from S).

2. Does v still have a white out-neighbor?

 2.1 If so, let it be u.

 - Push u into S, and color u gray.
 - Make u a child of v in the DFS-tree T.

 2.2 Otherwise, pop v from S and color it black (meaning v is done).

If there are still white vertices, repeat the above by restarting from an arbitrary white vertex v', creating a new DFS-tree rooted at v'.

 DFS
Running Example

Top of stack: \(a \), which has white out-neighbors \(b, d \). Suppose we access \(b \) first. Push \(b \) into \(S \).

\[
\begin{align*}
S &= (a, b).
\end{align*}
\]
Running Example

After pushing c into S:

$S = (a, b, c)$.
Running Example

Now c tops the stack. It has white out-neighbors d and e. Suppose we visit d first. Push d into S.

$$S = (a, b, c, d).$$
Running Example

After pushing g into S:

$$S = (a, b, c, d, g).$$
Running Example

Suppose we visit the (white) out-neighbor f of g first. Push f into S

$S = (a, b, c, d, g, f)$.

DFS tree

Yufei Tao
Running Example

After pushing e into S:

$$S = (a, b, c, d, g, f, e).$$
Running Example

e has no white out-neighbors. So pop it from S and color it black. Similarly, f has no white out-neighbors. Pop it from S and color it black.

$$S = (a, b, c, d, g).$$
Running Example

Now g tops the stack again. It still has a white out-neighbor i. So, push i into S.

![Graph with DFS tree]

$$S = (a, b, c, d, g, i).$$
Running Example

After popping \(i, g, d, c, b, a \):

\[
S = ().
\]
Now there is still a white vertex h. So we perform another DFS starting from h.

$S = (h)$.
Running Example

Pop h. The end.

$S = ()$.

Note that we have created a **DFS-forest**, which consists of 2 DFS-trees.
The fact below follows directly from the way DFS runs:

Lemma (the Ancestor-Descendent Lemma): Let u and v be two distinct vertices in G. Then, u is an ancestor of v in the DFS-forest if and only if the following holds: u is already in the stack when v enters the stack.
Time Analysis

DFS can be implemented efficiently as follows.

- Store G in the adjacency list format.
- For every vertex v, remember which is the next out-neighbor to explore.
- $O(|V| + |E|)$ stack operations.
- Use an array to remember the colors of all vertices.

The total running time is $O(|V| + |E|)$.
Next, we will see how to use the DFS forest to detect cycles.
Edge Classification

Suppose that we have already built a DFS-forest T.

Let (u, v) be an edge in G (remember that the edge is directed from u to v). It can be classified into

1. **forward edge** if u is a proper ancestor of v in a DFS-tree of T;
2. **back edge** if u is a descendant of v in a DFS-tree of T;
3. **cross edge** if neither of the above applies.
Example

Forward edges:
(a, b), (a, d), (b, c), (c, d), (c, e), (d, g), (g, f), (g, i), (f, e).

Back edge: (e, d).

Cross edges: (i, f), (h, d), (h, g).
Cycle Theorem

Theorem: Let T be an arbitrary DFS-forest. G contains a cycle if and only if there is a back edge with respect to T.

The “if-direction” is obvious. Proving the “only-if direction” is more difficult and will be done later.
Issue: How to test the type of an edge?

We can do so in constant time. For this purpose, we need to slightly augment the DFS-forest by remembering when each vertex enters and leaves the stack.
Augmenting DFS

Maintain a counter c, which is initially 0. Every time we perform a push or pop, increment c by 1.

For every vertex v, define:

- its **discovery time** $d-tm(v)$ as the value of c right after v is pushed into the stack;
- its **finish time** $f-tm(v)$ as the value of c right after v is popped from the stack.

Define the **time interval** of v as $I(v) = [d-tm(v), f-tm(v)]$.

It is straightforward to obtain $I(v)$ for all $v \in V$ by paying $O(|V|)$ extra time on top of DFS's running time. (**Think:** Why?)
Example

I(a) = [1, 16]
I(b) = [2, 15]
I(c) = [3, 14]
I(d) = [4, 13]
I(g) = [5, 12]
I(f) = [6, 9]
I(e) = [7, 8]
I(i) = [10, 11]
I(h) = [17, 18]
The fact below follows directly from the stack’s first-in-last-out property:

Lemma (the No-Partial-Overlap Lemma): For any two vertices u and v in G, their time intervals must satisfy one of the following:

- $I(u)$ contains $I(v)$;
- $I(v)$ contains $I(u)$;
- they are disjoint.
Combining the ancestor-descendant lemma with the no-partial-overlap lemma gives:

Theorem (the Parenthesis Theorem): Let u and v be two distinct vertices in G. Then:

- $I(u)$ contains $I(v)$ **if and only if** u is an ancestor of v in the DFS-forest.
- $I(v)$ contains $I(u)$ **if and only if** v is an ancestor of u in the DFS-forest.
- $I(u)$ and $I(v)$ are disjoint **if and only if** neither u nor v is an ancestor of the other.
We can now detect whether G has a cycle:

```plaintext
for every edge $(u, v)$ in $G$ do
  if $I(v)$ contains $I(u)$ then
    return “cycle exists”
  return “no cycle”
```

Only $O(|E|)$ extra time is needed.

We now conclude that the cycle detection problem can be solved in $O(|V| + |E|)$ time.
It remains to prove the cycle theorem. In fact, it is a corollary of the **white path theorem**, another important theorem about DFS.
White Path Theorem

Theorem: Let u be a vertex in G. Consider the moment right before u enters the stack in the DFS algorithm. Then, a vertex v becomes a proper descendant of u in the DFS-forest if and only if the following is true at this moment:

- there is a path from u to v including only white vertices.

The proof will be left as a exercise and discussed in the tutorial.
Example

Consider the moment in our previous example right before g just entered the stack. $S = (a, b, c, d)$.

We can see that g can reach f, e, and i via white paths. Therefore, f, e, and i are all proper descendants of g in the DFS-forest; and g has no other descendants.
Proving the Only-If Direction of the Cycle Theorem

We will now prove that if G has a cycle, then there must be a back edge in the DFS-forest.

Suppose that the cycle is $v_1 	o v_2 \to \ldots \to v_\ell \to v_1$.

Let v_i, for some $i \in [1, \ell]$, be the vertex in the cycle that is the first to enter the stack. Hence, at the moment right before v_i enters the stack, v_i can reach all the other vertices in the cycle via white paths. By the white path theorem, all the other vertices in the cycle must be proper descendants of v_i in the DFS-forest. Hence, the edge pointing to v_i in the cycle must be a back edge.