Dynamic Arrays and Amortized Analysis

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
To create an array, you need to specify a size, i.e., how many elements you can store in the array. Increasing the size is expensive because it means creating a new array and moving all the elements over.

This lecture will discuss clever tricks to change the array size efficiently! Our discussion will introduce **amortized analysis**, a new method for measuring the performance of a data structure.
Dynamic Array Problem

Let \(S \) be a collection of integers (not necessarily distinct). \(S \) is empty in the beginning. Integers are then added to \(S \) one by one with insertions.

Let \(n \) be the number of elements in \(S \) currently. We want to maintain an array \(A \) satisfying:

1. \(A \) has length \(O(n) \).
2. For each \(i \in [1, n] \), \(A[i] = x \) if \(x \) is the \(i \)-th integer added to \(S \).

The above requirements need to be satisfied after every insertion.
Naive Algorithm

Perform insert(e) (which inserts an integer e to S) as follows:

- If $n = 0$, set n to 1 and initialize A to have length 1 to store e.
- Otherwise ($n \geq 1$):
 - Increase n by 1.
 - Initialize an array A' of length n.
 - Copy all the $(n - 1)$ elements of A to A'.
 - Set $A'[n] = e$.
 - Destroy A and replace it with A'.

This algorithm spends $O(n)$ time on the n-th insertion. Altogether, it takes $O(n^2)$ time to do n insertions.
We will reduce the time of inserting n elements dramatically to $O(n)$. Our array A may have a length up to $2n$.
A Better Algorithm

A is **full** if its cells are all filled.

Perform insert(e) as follows:

- If \(n = 0 \), set \(n \) to 1 and initialize \(A \) of length 2 to store just \(e \) itself.
- Otherwise (i.e., \(n \geq 1 \)), append \(e \) to \(A \) and increase \(n \) by 1. If \(A \) is full:
 - Initialize an array \(A' \) of length \(2n \).
 - Copy all the elements of \(A \) to \(A' \).
 - Destroy \(A \) and replace it with \(A' \).
Example

$n = 1$

$n = 2$

$n = 3$

$n = 4$

$n = 5$

$...$

$n = 8$
Cost of inserting the n-th element:

- if A is not full after the insertion, $O(1)$;
- otherwise, $O(n)$, i.e., the time of expanding A.
Analysis

Array expansions are infrequent:

- Initially, size 2.
- 1st expansion: size from 2 to 4.
- 2nd expansion: from 4 to 8.
- ...
- i-th expansion: from 2^i to 2^{i+1}.

After n insertions, the size of A is at most $2n$. Hence:

$$2^{i+1} \leq 2n \Rightarrow i \leq \log_2 n$$

that is, at most $\log_2 n$ expansions.
The total cost of \(n \) insertions is bounded by:

\[
\left(\sum_{i=1}^{n} O(1) \right) + \log_2 n \sum_{i=1}^{n} O(2^i) \tag{1}
\]

where

- the first term captures the \(O(1) \) time compulsory for each insertion;
- the second term captures all the expansion cost.

(1) evaluates to \(O(n) \).
We have shown that the total cost of \(n \) insertions is \(O(n) \). In other words, each insertion entails \(O(1) \) cost “on average”. This does not mean that every insertion can be performed in \(O(1) \) time. The cost of some insertions can reach \(\Omega(n) \).
In general, if a data structure can process any n operations in $f(n)$ time, we say that it guarantees an amortized cost of $\frac{f(n)}{n}$ per operation.

The dynamic array guarantees $O(1)$ amortized cost per insertion.