
1/18

Linked Lists, Stacks, and Queues

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Linked Lists, Stacks, and Queues

2/18

A data structure has two functionalities:

store a set of elements;

supports certain operations on those elements.

The only data structure in our discussion so far is the array.

In this lecture, we will first discuss a new data structure, the linked list,

and then utilize it to design two other structures: the stack and the

queue.

Yufei Tao Linked Lists, Stacks, and Queues

3/18

Linked List

A linked list is a sequence of nodes where:

each node is an array;

the node’s address is defined as its array’s starting memory
address;

the node stores in its array

a back-pointer to its preceding node (if it exists);
a next-pointer to its succeeding node (if it exists).

Recall that a “pointer” is a memory address.

In a linked list, the first node is called the head and the last node is

called the tail.

Yufei Tao Linked Lists, Stacks, and Queues

4/18

Linked List

The figure below illustrates a linked list of three nodes u1, u2, and u3,
whose addresses are a, b, and c , respectively.

a bc

cabb⊥ ⊥u1 u2u3

address

The back-pointer of node u1 (the head) is nil, denoted by ⊥. The
next-pointer of u3 (the tail) is also nil.

Yufei Tao Linked Lists, Stacks, and Queues

5/18

Example:

A linked list storing a set of integers {14, 65, 78, 33, 82}:

78

b c

a c 65

a d e

3382 14⊥ b b dc e d ⊥

Conceptually, we can think of the sequence (65, 78, 33, 82, 14) in
the linked list as:

65 78 33 82 14

Yufei Tao Linked Lists, Stacks, and Queues

6/18

Two (Simple) Facts

Suppose that we use a linked list to store a set S of n integers (one node
per integer).

Fact 1: The linked list uses O(n) space, namely, O(n) memory
cells.

Fact 2: Starting from the head node, we can enumerate all the
integers in S in O(n) time.

Yufei Tao Linked Lists, Stacks, and Queues

7/18

A linked list storing a set S supports updates:

insertion: add a new element to S ;

deletion: remove an existing element from S .

Yufei Tao Linked Lists, Stacks, and Queues

8/18

Insertion in a Linked List

To insert a new element e, append e to the linked list:

1 Identify the tail node u.

2 Create a new node unew to store e.

3 Set the next-pointer of u to the address of unew .

4 Set the back-pointer of unew to the address of u.

O(1) time.

Yufei Tao Linked Lists, Stacks, and Queues

9/18

Example

78

b c

a c 65

a d e

3382 14⊥ b b dc e d ⊥

65 78 33 82 14

After inserting 57:

78

b c

a c 65

a d e

3382 14⊥ b b dc e d f

f

57 e ⊥

65 78 33 82 14 57

Yufei Tao Linked Lists, Stacks, and Queues

10/18

Deletion from a Linked List

Given a pointer to a node u in the linked list, we can delete the node as
follows:

1 Identify the preceding node uprec of u.

2 Identify the succeeding node usucc of u.

3 Set the next-pointer of uprec to the address of usucc .

4 Set the back-pointer of usucc to the address of uprec .

5 Free up the memory of u.

O(1) time

Yufei Tao Linked Lists, Stacks, and Queues

11/18

Example

78

b c

a c 65

a d e

3382 14⊥ b b dc e d f

f

57 e ⊥

65 78 33 82 14 57

After deleting 78:

c

65

a d e

3382 14⊥ c a dc e d f

f

57 e ⊥

65 33 82 14 57

Yufei Tao Linked Lists, Stacks, and Queues

12/18

Next, we will deploy the linked list to implement two data struc-
tures: stack and queue.

Yufei Tao Linked Lists, Stacks, and Queues

13/18

Stack

A stack manages a set S of elements and supports two operations:

push(e): insert a new element e into S .

pop: remove the most recently inserted element from S and
returns it.

First-In-Last-Out (FILO).

Yufei Tao Linked Lists, Stacks, and Queues

14/18

Example

Consider the following sequence of operations on an empty stack:

Push(35): S = {35}.

Push(23): S = {35, 23}.

Push(79): S = {35, 23, 79}.

Pop: return 79 after removing it from S . Now S = {35, 23}.

Pop: return 23 after removing it from S . Now S = {35}.

Push(47): S = {35, 47}.

Pop: return 47 after removing it from S . Now S = {35}.

Yufei Tao Linked Lists, Stacks, and Queues

15/18

Linked-List implementation of a Stack

Store the elements of S in a linked list L.

Push(e): insert e at the end of L.
Pop: delete the tail node of L and return the element therein.

At all times, keep track of a pointer to the tail node.

Guarantees:

O(n) space where n = |S | (assuming that each element in S
occupies O(1) memory).

Push in O(1) time.

Pop in O(1) time.

Yufei Tao Linked Lists, Stacks, and Queues

16/18

Queue

A queue stores a set S of elements and supports two operations:

en-queue(e): inserts an element e into S .

de-queue: removes the least recently inserted element from S
and returns it.

First-In-First-Out (FIFO).

Yufei Tao Linked Lists, Stacks, and Queues

17/18

Example

Consider the following sequence of operations on an initially empty
queue:

En-queue(35): S = {35}.

En-queue(23): S = {35, 23}.

En-queue(79): S = {35, 23, 79}.

De-queue: return 35 after removing it from S . Now S = {23, 79}.

De-queue: return 23 after removing it from S . Now S = {79}.

En-queue(47): S = {79, 47}.

De-queue: return 79 after removing it from S . Now S = {47}.

Yufei Tao Linked Lists, Stacks, and Queues

18/18

Linked-List Implementation of a Queue

Store the elements of S in a linked list L.

En-queue(e): insert e at the end of L.
De-queue: delete the head node of L and return the element therein.

At all times, keep track of the addresses of the head and the tail.

Guarantees:

O(n) space, where n = |S | (assuming each element in S
occupies O(1) memory).

En-queue in O(1) time.

De-queue in O(1) time.

Yufei Tao Linked Lists, Stacks, and Queues

