k-Selection

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Problem: You are given a set S of n integers in an array and also an integer $k \in [1, n]$. Design an algorithm to find the k-th smallest integer of S.

For example, suppose that $S = \{53, 92, 85, 23, 35, 12, 68, 74\}$ and $k = 3$. You should output 35.

This problem can be easily settled in $O(n \log n)$ time by sorting. Next, we will solve it in $O(n)$ expected time with randomization.
To illustrate the idea behind our algorithm, suppose that we pick an arbitrary element (say the first) v of S.

Move elements around so that those smaller than v are placed before v, and those larger are placed after v. This requires only $O(n)$ time (no sorting required).

If $x = k - 1$, done (v is what we are looking for).

If $x < k - 1$, recurse by performing $(k - (x + 1))$-selection on the y elements to the right of v (subproblem).

If $x > k - 1$, recurse by performing k-selection on the x elements to the left of v (subproblem).
Idea

Obstacle: x or y can be very small (0 if we are unlucky) such that we can throw away only few elements before recursion.

\[
\begin{array}{c}
< v \\
\hline
\end{array}
\quad
\begin{array}{c}
v \\
\hline
\end{array}
\quad
\begin{array}{c}
> v \\
\hline
\end{array}
\]

\[x \text{ elements} \quad \leftrightarrow \quad y \text{ elements}\]

Wish: Make $x \geq n/3$ and $y \geq n/3$.
Antidote: Randomly select v from the whole array! Wish comes true with probability $1/3$!

New obstacle: Would still fail with probability $2/3$.
New antidote: Choose another v if we fail; 3 repeats in expectation!
The rank of an integer v in S is the number of elements in S smaller than or equal to v.

For example, suppose that $S = (53, 92, 85, 23, 35, 12, 68, 74)$. Then, the rank of 53 is 4 and that of 12 is 1.

Finding the rank of v in S takes only $O(|S|)$ time.
Algorithm

1. Randomly pick an integer \(v \) from \(S \); call \(v \) the \textbf{pivot}.
2. Get the rank \(r \) of \(v \).
3. If \(r \) is not in \([n/3, 2n/3]\), repeat from Step 1.
4. Otherwise:
 4.1 If \(k = r \), return \(v \).
 4.2 If \(k < r \), perform \(k \)-selection on the elements of \(S \) less than \(v \).
 4.3 If \(k > r \), perform \((k - r)\)-selection on the elements of \(S \) greater than \(v \).
Example

Goal: find the 10-th smallest element from 12 elements:

\[
\begin{array}{cccccccccc}
17 & 26 & 38 & 28 & 41 & 72 & 83 & 88 & 5 & 9 & 12 & 35
\end{array}
\]

Suppose that the pivot v chosen happens to be 12, whose rank is 3, outside the range $[4, 8]$. We repeat by randomly choosing another pivot v, which — let us assume — happens to be 83. Again, its rank 11 is outside the range $[4, 8]$. Repeat another time; let the pivot v returned by 35, whose rank is 7.

We recurse by finding the 3-rd smallest element in:

\[
\begin{array}{ccccc}
38 & 41 & 72 & 83 & 88
\end{array}
\]
Cost Analysis

Step 1 (on Slide 6) takes $O(1)$ time. Step 2 takes $O(n)$ time.

How many times do we have to repeat the above two steps? With a probability $1/3$, we can proceed to Step 3 \Rightarrow need to repeat only 3 times in expectation!

When we are at Step 3, A has at most $\lceil 2n/3 \rceil$ elements left.
Cost Analysis

Let $f(n)$ be the expected running time of our algorithm on an array of size n.

We know from the earlier analysis:

$$f(1) \leq O(1)$$
$$f(n) \leq O(n) + f([2n/3]).$$

Solving the recurrence gives $f(n) = O(n)$ (Master’s theorem).
It is worth mentioning that the k-selection problem can be solved in $O(n)$ time deterministically. However, the algorithm is much more complicated. This demonstrates the power of randomization again.