Two Methods for Solving Recurrences

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

We have seen how to analyze the running time of recursive algorithms by recurrence. It is important to sharpen our skills in solving recurrences. Today, we will learn two techniques for this purpose: the master theorem and the substitution method.

Master Theorem

The Master Theorem

Let $f(n)$ be a function that returns a positive value for every integer $n>0$. We know:

$$
\begin{aligned}
& f(1)=O(1) \\
& f(n) \leq \alpha \cdot f(\lceil n / \beta\rceil)+O\left(n^{\gamma}\right) \quad(\text { for } n \geq 2)
\end{aligned}
$$

where $\alpha \geq 1, \beta>1$, and $\gamma \geq 0$ are constants. Then:

- If $\log _{\beta} \alpha<\gamma$, then $f(n)=O\left(n^{\gamma}\right)$.
- If $\log _{\beta} \alpha=\gamma$, then $f(n)=O\left(n^{\gamma} \log n\right)$.
- If $\log _{\beta} \alpha>\gamma$, then $f(n)=O\left(n^{\log _{\beta} \alpha}\right)$.

The theorem can be proved by carefully applying the "expansion method" we saw earlier. The details are tedious and omitted.

Example 1

Consider the recurrence of binary search:

$$
\begin{aligned}
f(1) & \leq c_{1} \\
f(n) & \leq f(\lceil n / 2\rceil)+c_{2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Hence, $\alpha=1, \beta=2$, and $\gamma=0$. Since $\log _{\beta} \alpha=\gamma$, we know that $f(n)=O\left(n^{0} \cdot \log n\right)=O(\log n)$.

Example 2

Consider the recurrence of merge sort:

$$
\begin{aligned}
& f(1) \leq c_{1} \\
& f(n) \leq 2 \cdot f(\lceil n / 2\rceil)+c_{2} n \quad(\text { for } n \geq 2)
\end{aligned}
$$

Hence, $\alpha=2, \beta=2$, and $\gamma=1$. Since $\log _{\beta} \alpha=\gamma$, we know that $f(n)=O\left(n^{\gamma} \cdot \log n\right)=O(n \log n)$.

Example 3

Consider the recurrence:

$$
\begin{aligned}
& f(1) \leq c_{1} \\
& f(n) \leq 2 \cdot f(\lceil n / 4\rceil)+c_{2} \sqrt{n} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Hence, $\alpha=2, \beta=4$, and $\gamma=1 / 2$. Since $\log _{\beta} \alpha=\gamma$, we know that $f(n)=O\left(n^{\gamma} \cdot \log n\right)=O(\sqrt{n} \log n)$.

Example 4

Consider the recurrence:

$$
\begin{aligned}
& f(1) \leq c_{1} \\
& f(n) \leq 2 \cdot f(\lceil n / 2\rceil)+c_{2} \sqrt{n} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Hence, $\alpha=2, \beta=2$, and $\gamma=1 / 2$. Since $\log _{\beta} \alpha>\gamma$, we know that $f(n)=O\left(n^{\log _{\beta} \alpha}\right)=O(n)$.

Example 5

Consider the recurrence:

$$
\begin{aligned}
& f(1) \leq c_{1} \\
& f(n) \leq 13 \cdot f(\lceil n / 7\rceil)+c_{2} n^{2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Hence, $\alpha=13, \beta=7$, and $\gamma=2$. Since $\log _{\beta} \alpha<\gamma$, we know that $f(n)=O\left(n^{\gamma}\right)=O\left(n^{2}\right)$.

The Substitution Method
 Solving a Recurrence by Mathematical Induction

Example 6

Consider the recurrence:

$$
\begin{aligned}
& f(1)=1 \\
& f(n) \leq f(n-1)+11 n \quad(\text { for } n \geq 2)
\end{aligned}
$$

We will prove $f(n)=O\left(n^{2}\right)$ by induction.

We aim to find a constant c such that $f(n) \leq c \cdot n^{2}$ for $n \geq 1$. To that end, we want to gather all the conditions that c should satisfy.

For the base case of $n=1$, for $f(1) \leq c$ to hold, we require $c \geq 1$.
Suppose that (n) $\leq c n^{2}$ for all $n \leq k-1$ where $k \geq 2$. Then, we have:

$$
\begin{aligned}
f(k) & \leq f(k-1)+11 k \leq c \cdot(k-1)^{2}+11 k \\
& =c k^{2}-2 c k+c+11 k
\end{aligned}
$$

To make the above at most $c k^{2}$, we need

$$
c \geq 11 k /(2 k-1)
$$

For $k \geq 2$, the fraction $\frac{11 k}{2 k-1} \leq 22 / 3$ (maximum taken at $k=2$). The requirement becomes $c \geq 22 / 3$.

Any $c \geq 22 / 3$ gives a working argument. We will set $c=8$ to simplify the calculation in the argument, given in the next slide.

Proof (for the claim $f(n)=O\left(n^{2}\right)$): We will prove $f(n) \leq 8 n^{2}$ for all $n \geq 1$.

For the base case of $n=1$, we have $f(1)=1 \leq 8$.
Suppose that $(n) \leq 8 n^{2}$ for all $n \leq k-1$ where $k \geq 2$. Then, we have:

$$
\begin{aligned}
f(k) & \leq f(k-1)+11 k \leq 8 \cdot(k-1)^{2}+11 k \\
& =8 k^{2}-5 k+8
\end{aligned}
$$

which is at most $8 k^{2}$ because $k \geq 2$.

This completes the proof.

Try to use the method to "prove" $f(n) \leq c n$. You will never succeed because $f(n)=\Omega\left(n^{2}\right)$, but it is worth trying to see how the argument will fail.

Example 7

Consider the recurrence:

$$
\begin{aligned}
& f(1)=f(2)=f(3)=1 \\
& f(n) \leq f(\lceil n / 5\rceil)+f\left(\left\lceil\frac{7 n}{10}\right\rceil\right)+n \quad(\text { for } n \geq 4)
\end{aligned}
$$

This is really a non-trivial recurrence (the master theorem is not applicable here). We will prove that $f(n)=O(n)$ using the substitution method.

Goal: To prove $f(n) \leq \alpha n$ for all $n \geq \beta$, where α and β are positive constants.

Base case $(n=\beta)$: We need $\alpha \cdot \beta \geq f(\beta)$.
Induction: Assuming correctness for $n \leq k-1$ for any $k \geq \beta+1$, we aim to show $f(k) \leq \alpha k$. We have:

$$
\begin{aligned}
f(k) & \leq \alpha(\lceil k / 5\rceil)+\alpha(\lceil(7 / 10) k\rceil)+k \\
& \leq \alpha(k / 5+1)+\alpha((7 / 10) k+1)+k \\
& =\alpha(9 / 10) k+2 \alpha+k
\end{aligned}
$$

We need:

$$
\begin{aligned}
\alpha(9 / 10) k+2 \alpha+k & \leq \alpha k \\
\Leftrightarrow(\alpha / 10-1) k & \geq 2 \alpha \\
\Leftarrow(\alpha / 10-1) \beta & \geq 2 \alpha
\end{aligned}
$$

Choose $\beta=40$ (in fact, any $\beta>20$ will work). The above requirement becomes $\alpha \geq 20$.

Hence, $\alpha=\max \{20, f(40) / 40\}$ and $\beta=40$ give a working argument.

