
1/21

Asymptotic Analysis:
The Growth of Functions

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Asymptotic Analysis: The Growth of Functions



2/21

So far we have been analyzing the time of algorithms at a “fine-grained”
level. For example, we characterized the worst-case time of binary search
as at most f (n) = 10 + 10 log2 n, where n is the problem size.

In computer science, we rarely calculate the time to such a level. In
particular, we typically ignore all the constants and focus only on the
dominating term. For example, instead of f (n) = 10 + 10 log2 n, we will
keep only the log2 n term.

In this lecture, we will:

1 Shed light on the rationale behind this “one-term-only” principle;

2 Define a mathematically rigorous way to enforce the principle—the
asymptotic approach.

Yufei Tao Asymptotic Analysis: The Growth of Functions



3/21

Why Not Constants?

Let us start with a question. Suppose that one algorithm has 5n atomic
operations, while another algorithm 10n. Which one is faster in practice?

The answer is: “it depends!”

Not every atomic operation takes equally long in reality. For example, a

comparison a < b is typically faster than multiplication a · b, which in

turn is usually faster than accessing a location in memory. Therefore,

which algorithm is faster depends on the concrete operations they use.

Yufei Tao Asymptotic Analysis: The Growth of Functions



4/21

Why Not Constants?

To be perfectly precise, we should measure the time of an algorithm in
the form of

n1 · c1 + n2 · c2 + n3 · c3 + ...

where ni (i ≥ 1) is the number of times the algorithm performs the i-th
type of atomic operations, and ci is the duration of one such operation.

Besides significantly complicating analysis, the above approach does not

necessarily make it easier to compare algorithms. The next slide gives an

example.

Yufei Tao Asymptotic Analysis: The Growth of Functions



5/21

Why Not Constants?

Suppose that Algorithm 1 runs in

1000n · cmult + 10n · cmem

time, where cmult is the time of one multiplication, and cmem the time of
one memory access; Algorithm 2 runs in

10n · cmult + 100n · cmem

time. Again, which one is better depends on the specific values of cmult

and cmem, which vary from machine to machine.

In mathematics, we want to make a universally correct conclusion,
which holds on all machines. The following is one such conclusion:

The algorithms’ costs differ by at most a constant factor.

Yufei Tao Asymptotic Analysis: The Growth of Functions



6/21

So, What Does Matter?

In computer science, we care about the growth of an algorithm’s
running time w.r.t. the problem size n.

We care about the efficiency of an algorithm when n is large. For small n,
the efficiency is less of a concern, because even a slow algorithm would
have acceptable performance.

Yufei Tao Asymptotic Analysis: The Growth of Functions



7/21

Example

Suppose that Algorithm 1 demands n atomic operations, while Algorithm
2 requires 10000 · log2 n.

Even though we do not know the atomic operations performed by each
algorithm, we can still draw a universally correct conclusion:

Algorithm 2 is faster than Algorithm 1 when n is sufficiently large.

The ratio n
10000 log2 n

continuously increases with n. In other words, when

n tends to ∞, Algorithm 2 is infinitely faster.

Yufei Tao Asymptotic Analysis: The Growth of Functions



8/21

Art of Computer Science

Primary objective:

Minimize the growth of running time in solving a problem.

Next, we will learn how to decide rigorously whether a function has a

faster growth than another.

Yufei Tao Asymptotic Analysis: The Growth of Functions



9/21

Big-O

Let f (n) and g(n) be two functions of n.

We say that f (n) grows asymptotically no faster than g(n) if
there is a constant c1 > 0 such that

f (n) ≤ c1 · g(n)

holds for all n at least a constant c2.

We can denote this by f (n) = O(g(n)).

Yufei Tao Asymptotic Analysis: The Growth of Functions



10/21

Example

Both the following are true:

10n = O(5n)

5n = O(10n).

In other words, 10n and 5n have the same growth (i.e., linear).

Proof of 10n = O(5n): Constants c1 = 2 and c2 = 1 ensure
10n ≤ c1 · 5n for all n ≥ c2.

Remark. Note that many constants will allow you to prove the
same. Here are another two: c1 = 10 and c2 = 100.

The proof of 5n = O(10n) is left to you.

Yufei Tao Asymptotic Analysis: The Growth of Functions



11/21

Example

Earlier, we said that an algorithm with running time 10000 log2 n is better
than another one with time n. This can be seen from Big-O:

10000 log2 n = O(n)

n ̸= O(10000 log2 n)

Proof of 10000 log2 n = O(n): Constants c1 = 1 and c2 = 220 ensure
10000 log2 n ≤ c1 · n holds for all n ≥ c2.

Yufei Tao Asymptotic Analysis: The Growth of Functions



12/21

Example

Proof of n ̸= O(10000 log2 n): Let us prove the second inequality by
contradiction. Suppose that there are constants c1 and c2 such that

n ≤ c1 · 10000 log2 n

holds for all n ≥ c2. The above can be rewritten as:

n

log2 n
≤ c1 · 10000.

The left hand side tends to ∞ as n increases. Therefore, the inequality

cannot hold for all n ≥ c2.

Yufei Tao Asymptotic Analysis: The Growth of Functions



13/21

Example

Verify all the following:

10000000 = O(1)

100
√
n + 10n = O(n)

1000n1.5 = O(n2)

(log2 n)
3 = O(

√
n)

(log2 n)
9999999999 = O(n0.0000000001)

n0.0000000001 ̸= O((log2 n)
9999999999)

n9999999999 = O(2n)

2n ̸= O(n9999999999)

Yufei Tao Asymptotic Analysis: The Growth of Functions



14/21

An interesting fact:

logb1 n = O(logb2 n)

for any constants b1 > 1 and b2 > 1.

For example, let us verify log2 n = O(log3 n).

Notice that

log3 n =
log2 n

log2 3
⇒ log2 n = log2 3 · log3 n.

Hence, we can set c1 = log2 3 and c2 = 1, which makes

log2 n ≤ c1 log3 n

hold for all n ≥ c2.

Yufei Tao Asymptotic Analysis: The Growth of Functions



15/21

An interesting fact:

logb1 n = O(logb2 n)

for any constants b1 > 1 and b2 > 1.

Because of the above, in computer science, we omit all the constant
logarithm bases in big-O. For example, instead of O(log2 n), we will
simply write O(log n).

Essentially, this says that “you are welcome to put any constant
base there; and it will be the same asymptotically”.

Yufei Tao Asymptotic Analysis: The Growth of Functions



16/21

Henceforth, we will describe the running time of an algorithm only
in the asymptotical (i.e., big-O) form, which is also called the
algorithm’s time complexity.

Instead of saying that the running time of binary search is

f (n) = 10 + 10 log2 n, we will say f (n) = O(log n), which captures the

fastest-growing term in the running time. This is also the binary search’s

time complexity.

Yufei Tao Asymptotic Analysis: The Growth of Functions



17/21

Big-Ω

Let f (n) and g(n) be two functions of n.

If g(n) = O(f (n)), then we define:

f (n) = Ω(g(n))

to indicate that f (n) grows asymptotically no slower than g(n).

The next slide gives an equivalent definition.

Yufei Tao Asymptotic Analysis: The Growth of Functions



18/21

Big-Ω

Let f (n) and g(n) be two functions of n.

We say that f (n) grows asymptotically no slower than g(n) if
there is a constant c1 > 0 such that

f (n) ≥ c1 · g(n)

holds for all n at least a constant c2.

We can denote this by f (n) = Ω(g(n)).

Yufei Tao Asymptotic Analysis: The Growth of Functions



19/21

Example

Verify all the following:

log2 n = Ω(1)

0.001n = Ω(
√
n)

2n2 = Ω(n1.5)

n0.0000000001 = Ω((log2 n)
9999999999)

2n

1000000
= Ω(n9999999999)

Yufei Tao Asymptotic Analysis: The Growth of Functions



20/21

Big-Θ

Let f (n) and g(n) be two functions of n.

If f (n) = O(g(n)) and f (n) = Ω(g(n)), then we define:

f (n) = Θ(g(n))

to indicate that f (n) grows asymptotically as fast as g(n).

Yufei Tao Asymptotic Analysis: The Growth of Functions



21/21

Example

Verify the following:

10000 + 30 log2 n + 1.5
√
n = Θ(

√
n)

10000 + 30 log2 n + 1.5n0.5000001 ̸= Θ(
√
n)

n2 + 2n + 1 = Θ(n2)

Yufei Tao Asymptotic Analysis: The Growth of Functions


