Problem 1. Let S be a set of 9 integers $\{75, 23, 12, 87, 90, 44, 8, 32, 89\}$, stored in an array of length 9. Let us use quicksort to sort S. Recall that the algorithm randomly picks a pivot element, and then, recursively sorts two sets S_1 and S_2, respectively. Suppose that the pivot is 89. What are the contents of S_1 and S_2, respectively? The ordering of the elements in S_1 and S_2 does not matter.

Solution. $S_1 = \{75, 23, 12, 87, 44, 8, 32\}$ and $S_2 = \{90\}$.

Problem 2 (Sorting a Multi-Set). Let A be an array of n integers. Note that some of the integers may be identical. Design an algorithm to arrange these integers in non-descending order.

For example, if A stores the sequence of integers $(35, 12, 28, 12, 35, 7, 63, 35)$, you should output an array $(7, 12, 12, 28, 35, 35, 35, 63)$.

Solution. We will apply merge sort as a black box, namely, we do not need to change how the algorithm works at all. Let S be a set of n elements defined as follows: the i-th ($1 \leq i \leq n$) element of S equals (i, v) where $v = A[i]$. Create an array B of length n, where $B[i]$ equals the i-th element in S. B can be generated easily from A in $O(n)$ time.

We apply merge sort to sort B, but compare two elements $e_1 = (i_1, v_1)$ and $e_2 = (i_2, v_2)$ in the following way:

- If $v_1 < v_2$, then rule $e_1 < e_2$
- If $v_1 > v_2$, then rule $e_1 > e_2$
- If $v_1 = v_2$:
 - If $i_1 < i_2$, then rule $e_1 < e_2$;
 - Otherwise, rule $e_1 > e_2$.

After B has been sorted, we can easily generate the output array from B in $O(n)$ time.

Problem 3. Let S_1 be a set of n integers, and S_2 another set of n integers. Each of S_1 and S_2 is stored in an array of length n. The arrays are not necessarily sorted. Design an algorithm to determine whether $S_1 \cap S_2$ is empty. Your algorithm must terminate in $O(n \log n)$ time.

Solution. Sort S_1 and S_2 together as a multi-set (using the algorithm of Problem 2) in $O(n \log n)$ time. Then, scan the sorted list, and check whether there are two identical integers coming from different sets; this can be done in $O(n)$ time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not necessarily sorted). Let e and e' be two integers in S such that e is positioned before e' in A. We call the pair (e, e') an inversion in S if $e > e'$. Design an algorithm to count the number of inversions in S. Your algorithm must terminate in $O(n \log n)$ time.
For example, if the array stores the sequence \((10, 15, 7, 12)\), then your algorithm should return 3, because there are 3 inversions: \((10, 7)\), \((15, 7)\), and \((15, 12)\).

Solution. If \(n = 1\), simply return 0. If \(n \geq 2\), we divide \(A\) into two halves: (i) the first half includes the first \([n/2]\) elements, and (ii) the second includes the rest. Let \(A_1\) be the array corresponding to the first half, and \(A_2\) be the array corresponding to the second. We count the number \(c_1\) of inversions in \(A_1\) recursively, and then count the number \(c_2\) of inversions in \(A_2\) recursively. We ensure that (i) when the execution returns from \(A_1\), the array \(A_1\) has been sorted, and (ii) the same is true for \(A_2\).

We now count the number \(c_3\) of such inversions \((e, e')\) that \(e \in A_1\) and \(e' \in A_2\). This can be achieved in \(O(n)\) time utilizing the fact that both \(A_1\) and \(A_2\) have been sorted. Initially, set \(i\) and \(j\) to 1, and \(c_3\) to 0. Next, repeat the following until either \(i > |A_1|\) or \(j > |A_2|\):

- If \(A_1[i] < A_2[j]\), then increase \(c_3\) by \(j - 1\), and increase \(i\) by 1;
- Otherwise (i.e., \(A_1[i] > A_2[j]\)), increase \(j\) by 1.

If at this moment \(j = |A_2| + 1\), increase \(c_3\) by \((|A_1| - i + 1)|A_2|\). The total number of inversions equals \(c_1 + c_2 + c_3\).

Before returning to the upper level of recursion, we merge \(A_1\) and \(A_2\) into one sorted list \(A'\), and copy the elements of \(A'\) into \(A\) (which thus becomes sorted). This takes \(O(n)\) time.

Let \(f(n)\) be the worst-case running time of our algorithm. It holds that \(f(1) = O(1)\), and \(f(n) = 2 \cdot f([n/2]) + O(n)\). By the master theorem, we have \(f(n) = O(n \log n)\).

Problem 5* (Maxima). In two-dimensional space, a point \((x, y)\) dominates another point \((x', y')\) if \(x > x'\) and \(y > y'\). Let \(S\) be a set of \(n\) points in two-dimensional space, such that no two points share the same \(x\)- or \(y\)-coordinate. A point \(p \in S\) is a maximal point of \(S\) if no point in \(S\) dominates \(p\). For example, suppose that \(S = \{(1, 1), (5, 2), (3, 5)\}\); then \(S\) has two maximal points: \((5, 2)\) and \((3, 5)\).

Suppose that \(S\) is given in an array of length \(n\), where the \(i\)-th \((1 \leq i \leq n)\) element stores the \(x\)- and \(y\)-coordinates of the \(i\)-th point in \(S\) (i.e., each element of the array occupies 2 memory cells). For example, \(S = \{(1, 1), (5, 2), (3, 5)\}\) is given as the sequence of integers: \((1, 1, 5, 2, 3, 5)\). Design an algorithm to find all the maximal points of \(S\) in \(O(n \log n)\) time.

Solution. First, sort all the points of \(S\) by \(x\)-coordinate in \(O(n \log n)\) time. Then, process the points in descending order of \(x\)-coordinate as follows. Initially, set \(y_{max}\) to \(-\infty\). For each \(i \in [1, n]\), let \(p_i = (x_i, y_i)\) be the \(i\)-th point in the (descending) sorted order. If \(y_i < y_{max}\), ignore \(p_i\) and move on to the next \(i\). Otherwise, report \(p_i\) as a maximal point, and set \(y_{max}\) to \(y_i\). The processing obviously takes only \(O(n)\) time, rendering the overall time complexity \(O(n \log n)\).