CSCI2100: Regular Exercise Set 5

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S be a set of 9 integers $\{75, 23, 12, 87, 90, 44, 8, 32, 89\}$, stored in an array of length 9. Let us use quicksort to sort S. Recall that the algorithm randomly picks a pivot element, and then, recursively sorts two sets S_1 and S_2 , respectively. Suppose that the pivot is 89. What are the contents of S_1 and S_2 , respectively? The ordering of the elements in S_1 and S_2 does not matter.

Solution. $S_1 = \{75, 23, 12, 87, 44, 8, 32\}$ and $S_2 = \{90\}$.

Problem 2 (Sorting a Multi-Set). Let A be an array of n integers. Note that some of the integers may be identical. Design an algorithm to arrange these integers in non-descending order. For example, if A stores the sequence of integers (35, 12, 28, 12, 35, 7, 63, 35), you should output an array (7, 12, 12, 28, 35, 35, 35, 63).

Solution. We will apply merge sort as a *black box*, namely, we do not need to change how the algorithm works at all. Let S be a set of n elements defined as follows: the *i*-th $(1 \le i \le n)$ element of S equals (i, v) where v = A[i]. Create an array B of length n, where B[i] equals the *i*-th element in S. B can be generated easily from A in O(n) time.

We apply merge sort to sort B, but compare two elements $e_1 = (i_1, v_1)$ and $e_2 = (i_2, v_2)$ in the following way:

- If $v_1 < v_2$, then rule $e_1 < e_2$
- If $v_1 > v_2$, then rule $e_1 > e_2$
- If $v_1 = v_2$:
 - If $i_1 < i_2$, then rule $e_1 < e_2$;
 - Otherwise, rule $e_1 > e_2$.

After B has been sorted, we can easily generate the output array from B in O(n) time.

Problem 3. Let S_1 be a set of n integers, and S_2 another set of n integers. Each of S_1 and S_2 is stored in an array of length n. The arrays are not necessarily sorted. Design an algorithm to determine whether $S_1 \cap S_2$ is empty. Your algorithm must terminate in $O(n \log n)$ time.

Solution. Sort S_1 and S_2 together as a multi-set (using the algorithm of Problem 2) in $O(n \log n)$ time. Then, scan the sorted list, and check whether there are two identical integers coming from different sets; this can be done in O(n) time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not necessarily sorted). Let e and e' be two integers in S such that e is positioned before e' in A. We call the pair (e, e') an *inversion* in S if e > e'. Design an algorithm to count the number of inversions in S. Your algorithm must terminate in $O(n \log n)$ time.

For example, if the array stores the sequence (10, 15, 7, 12), then your algorithm should return 3, because there are 3 inversions: (10, 7), (15, 7), and (15, 12).

Solution. If n = 1, simply return 0. If $n \ge 2$, we divide A into two halves: (i) the first half includes the first $\lceil n/2 \rceil$ elements, and (ii) the second includes the rest. Let A_1 be the array corresponding to the first half, and A_2 be the array corresponding to the second. We count the number c_1 of inversions in A_1 recursively, and then count the number c_2 of inversions in A_2 recursively. We ensure that (i) when the execution returns from A_1 , the array A_1 has been sorted, and (ii) the same is true for A_2 .

We now count the number c_3 of such inversions (e, e') that $e \in A_1$ and $e' \in A_2$. This can be achieved in O(n) time utilizing the fact that both A_1 and A_2 have been sorted. Initially, set *i* and *j* to 1, and c_3 to 0. Next, repeat the following until either $i > |A_1|$ or $j > |A_2|$:

- If $A_1[i] < A_2[j]$, then increase c_3 by j 1, and increase i by 1;
- Otherwise (i.e., $A_1[i] > A_2[j]$), increase j by 1.

If at this moment $j = |A_2| + 1$, increase c_3 by $(|A_1| - i + 1)|A_2|$. The total number of inversions equals $c_1 + c_2 + c_3$.

Before returning to the upper level of recursion, we merge A_1 and A_2 into one sorted list A', and copy the elements of A' into A (which thus becomes sorted). This takes O(n) time.

Let f(n) be the worst-case running time of our algorithm. It holds that f(1) = O(1), and $f(n) = 2 \cdot f(\lceil n/2 \rceil) + O(n)$. By the master theorem, we have $f(n) = O(n \log n)$.

Problem 5* (Maxima). In two-dimensional space, a point (x, y) dominates another point (x', y') if x > x' and y > y'. Let S be a set of n points in two-dimensional space, such that no two points share the same x- or y-coordinate. A point $p \in S$ is a maximal point of S if no point in S dominates p. For example, suppose that $S = \{(1, 1), (5, 2), (3, 5)\}$; then S has two maximal points: (5, 2) and (3, 5).

Suppose that S is given in an array of length n, where the *i*-th $(1 \le i \le n)$ element stores the xand y-coordinates of the *i*-th point in S (i.e., each element of the array occupies 2 memory cells). For example, $S = \{(1,1), (5,2), (3,5)\}$ is given as the sequence of integers: (1,1,5,2,3,5). Design an algorithm to find all the maximal points of S in $O(n \log n)$ time.

Solution. First, sort all the points of S by x-coordinate in $O(n \log n)$ time. Then, process the points in descending order of x-coordinate as follows. Initially, set y_{max} to $-\infty$. For each $i \in [1, n]$, let $p_i = (x_i, y_i)$ be the *i*-th point in the (descending) sorted order. If $y_i < y_{max}$, ignore p_i and move on to the next *i*. Otherwise, report p_i as a maximal point, and set y_{max} to y_i . The processing obviously takes only O(n) time, rendering the overall time complexity $O(n \log n)$.