CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove $\log_2(n!) = \Theta(n \log n)$.

Problem 2. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
f(1) &= 1 \\
f(n) &\leq 2 + f([n/10]).
\end{align*}
\]
Prove $f(n) = O(\log n)$. Recall that $[x]$ is the ceiling operator that returns the smallest integer at least x.

Problem 3. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
f(1) &= 1 \\
f(n) &\leq 2 + f(\lceil 3n/10 \rceil).
\end{align*}
\]
Prove $f(n) = O(\log n)$. Recall that $[x]$ is the ceiling operator that returns the smallest integer at least x.

Problem 4. Let $f(n)$ be a function of positive integer n. We know:
\[
\begin{align*}
f(1) &= 1 \\
f(n) &\leq 2n + 4f([n/4]).
\end{align*}
\]
Prove $f(n) = O(n \log n)$.

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:
1. If $n = 1$, nothing to sort; return.
Prove that the algorithm terminates in $O(n^2)$ time.

As an example, support that A contains the sequence of integers $(10, 15, 8, 29, 13)$. After Step 2 has been executed once, array A becomes $(10, 8, 15, 13, 29)$.

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for sorting an array A of n elements (we will use the notation $A[i.j]$ to represent the part of the array from $A[i]$ to $A[j]$):
- If $n = 1$ then return immediately.
- Otherwise set $k = \lceil n/3 \rceil$.
- Recursively sort $A[1..k]$ and $A[k+1..n]$, respectively.
- Merge $A[1..k]$ and $A[k+1..n]$ into one sorted array.
Prove that this algorithm runs in $O(n \log n)$ time.