
CSCI2100: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Prove log2(n!) = Θ(n log n).

Solution. Let us prove first log2(n!) = O(n log n):

log2(n!) = log2(Π
n
i=1i)

≤ log2 n
n

= n log2 n

= O(n log n).

Now we prove log2(n!) = Ω(n log n):

log2(n!) = log2(Π
n
i=1i)

≥ log2(Π
n
i=n/2i)

≥ log2(n/2)
n/2

= (n/2) log2(n/2)

= Ω(n log n).

This completes the proof.

Problem 2. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(⌈n/10⌉).

Prove f(n) = O(log n). Recall that ⌈x⌉ is the ceiling operator that returns the smallest integer at
least x.

Solution 1 (Expansion). Consider first n being a power of 10.

f(n) ≤ 2 + f(n/10)

≤ 2 + 2 + f(n/102)

≤ 2 + 2 + 2 + f(n/103)

...

≤ 2 · log10 n+ f(1)

= 2 · log10 n+ 1 = O(log n).

Now consider n that is not a power of 10. Let n′ be the smallest power of 10 that is greater
than n. We have:

f(n) ≤ f(n′)

≤ 2 log10 n
′ + 1

≤ 2 log10(10n) + 1

≤ O(log n).

1



Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem (see the
tutorial slides of Week 4). Thus, we have α = 1, β = 10, and γ = 0. Since logβ α = log10 1 = 0 = γ,
by the Master Theorem, we know that f(n) = O(nγ log n) = O(log n).

Solution 3 (Substitution). We aim to prove that f(n) ≤ 1 + α log2 n for some constant α to be
chosen later. Let β ≥ 1 be another constant that will also be decided later.

Base case (n ≤ β). For every n ∈ [1, β], we need

f(n) ≤ 1 + α log2 n

(1)

The above definitely holds when n = 1. For n ∈ [2, β], we will need

α ≥ f(n)− 1

log2 n
. (2)

Inductive case. Assuming f(n) ≤ 1 + α log2 n for all n ≤ t− 1 where t ≥ β + 1, we want to prove
f(t) ≤ 1 + α log2 t.

We will consider only

β ≥ 2 (3)

such that t ≥ 3 and, hence, ⌈t/10⌉ ≤ (t/10) + 1 ≤ t/2. With this, we have:

f(t) ≤ 2 + f(⌈t/10⌉)
≤ 3 + α log2⌈t/10⌉
≤ 3 + α log2(t/2)

= 3 + α log2 t− α.

To complete the inductive argument, we need the above to be at most 1 + α log2 t, namely:

α ≥ 2. (4)

To satisfy (2)-(4), we set β = 2 and α = max{2, (f(2)− 1)/ log2 2} = max{2, f(2)− 1}.

Problem 3. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2 + f(⌈3n/10⌉).

Prove f(n) = O(log n). Recall that ⌈x⌉ is the ceiling operator that returns the smallest integer at
least x.

Solution 1 (Expansion).

f(n) ≤ 2 + f(n1) (define n1 = ⌈(3/10)n⌉)
f(n) ≤ 2 + 2 + f(n2) (define n2 = ⌈(3/10)n1⌉)
f(n) ≤ 2 + 2 + 2 + f(n3) (define n3 = ⌈(3/10)n2⌉)

...

f(n) ≤ 2 + 2 + ...+ 2︸ ︷︷ ︸
h terms

+f(nh) (define nh = ⌈(3/10)nh−1⌉)

= 2h+ f(nh). (5)

2



So it remains to analyze the value of h that makes nh small enough. Note that we do not need to
solve the precise value of h; it suffices to prove an upper bound for h. For this purpose, we reason
as follows. First, notice that

⌈3n/10⌉ ≤ (4n/10) (6)

when n ≥ 10 (prove this yourself).

Let us set h to be the smallest integer such that nh < 10 (this implies that nh−1 ≥ 10 and
nh ≥ (4/10)nh−1 ≥ 4). We have:

n1 ≤ (4/10)n

n2 = ⌈(3/10)n1⌉ ≤ (4/10)n1 ≤ (4/10)2n

n3 ≤ (4/10)3n

...

nh ≤ (4/10)hn

Therefore, the value of h cannot exceed log 10
4
n (otherwise, (4/10)4 · n < 1, making nh < 1, which

contradicts the fact that nh ≥ 4). Plugging this into (5) gives:

f(n) ≤ 2 log 10
4
n+ f(10) = O(log n). (think: why?)

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we
have α = 1, β = 10/3, and γ = 0. Since logβ α = log10/3 1 = 0 = γ, by the Master Theorem, we
know that f(n) = O(nγ log n) = O(log n).

Solution 3 (Substitution). We aim to prove that f(n) ≤ 1 + α log2 n for some constant α to be
chosen later. Let β ≥ 1 be another constant that will also be decided later.

Base case (n ≤ β). For n = 1, f(n) ≤ 1 + α log2 n always holds. For every n ∈ [2, β], we need

f(n) ≤ 1 + α log2 n

⇔ α ≥ f(n)− 1

log2 n
. (7)

Inductive case. Assuming f(n) ≤ 1 + α log2 n for all n ≤ t− 1 where t ≥ β + 1, we want to prove
f(t) ≤ 1 + α log2 t.

We will consider only

β ≥ 4 (8)

such that t ≥ 5 and, hence, ⌈3t/10⌉ ≤ (3t/10) + 1 ≤ t/2. With this, we have:

f(t) ≤ 2 + f(⌈3t/10⌉)
≤ 3 + α log2⌈3t/10⌉
≤ 3 + α log2(t/2)

= 3 + α log2 t− α.

To complete the inductive argument, we need the above to be at most 1 + α log2 t, namely:

α ≥ 2. (9)

3



To satisfy (7)-(9), we set β = 4 and α = max{2, f(2)− 1, f(3)−1)
log2 3

, f(4)−1
2 }.

Problem 4. Let f(n) be a function of positive integer n. We know:

f(1) = 1

f(n) ≤ 2n+ 4f(⌈n/4⌉).

Prove f(n) = O(n log n).

Solution 1 (Expansion). Consider first n being a power of 4.

f(n) ≤ 2n+ 4f(n/4)

≤ 2n+ 4(2n/4 + 4f(n/42))

≤ 2n+ 2n+ 42f(n/42)

= 2 · 2n+ 42f(n/42)

≤ 2 · 2n+ 42 · (2(n/42) + 4f(n/43))

= 3 · 2n+ 43f(n/43)

...

= (log4 n) · 2n+ n · f(1)
= (log4 n) · 2n+ n = O(n log n).

Now consider that n is not a power of 4. Let n′ be the smallest power of 4 that is greater than
n. This implies that n′ < 4n. We have:

f(n) ≤ f(n′)

≤ (log4 n
′) · 2n′ + n′

< (log4(4n)) · 8n+ 4n = O(n log n).

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we
have α = 4, β = 4, and γ = 1. Since logβ α = log4 4 = 1 = γ, by the Master Theorem, we know that
f(n) = O(nγ log n) = O(n log n).

Solution 3 (Substitution). We aim to prove that f(n) ≤ 1 + αn log2 n for some constant α to be
chosen later. Let β ≥ 1 be another constant that will also be decided later.

Base case (n ≤ β). For n = 1, it always holds that f(1) ≤ 1 + αn log2 n. For every n ∈ [2, β], we
need

f(n) ≤ 1 + αn log2 n

⇔ α ≥ f(n)− 1

n log2 n
. (10)

Inductive case. Assuming f(n) ≤ 1 + αn log2 n for all n ≤ t − 1 where t ≥ β + 1, we want to
prove f(t) ≤ 1 + αt log2 t.

We will consider only

β ≥ 4 (11)

4



such that t ≥ 5 and, hence, t/4 + 1 ≤ t/2. With this, we have:

f(t) ≤ 2t+ 4(1 + α⌈t/4⌉ log2⌈t/4⌉)
≤ 4 + 2t+ 4α(t/4 + 1) log2(t/4 + 1)

≤ 4 + 2t+ 4α(t/4 + 1) log2(t/2)

= 4 + 2t+ (αt+ 4α)(log2 t− 1)

≤ 4 + 2t+ (αt+ 4α) log2 t− αt− 4α

≤ 4 + 2t+ αt log2 t+ 4α log2 t− αt− 4α

To complete the inductive argument, we need the above to be at most 1 + αt log2 t, namely:

3 + 2t+ 4α log2 t ≤ αt+ 4α (12)

We will make sure

β ≥ 28. (13)

Under the above condition, for any t ≥ β, it holds that log2 t ≤ t/8. To ensure (12), we require:

3 + 2t+ 4α(t/8) ≤ αt+ 4α

⇔ 3 + 2t+ αt/2 ≤ αt+ 4α

⇔ 3 + 2t ≤ αt/2 + 4α

(as t ≥ β ≥ 28) ⇐ 5 ≤ α. (14)

To satisfy (10), (11), (13), and (14), we set β = 28 and α = max{5, f(2)−1
2 , f(3)−1

3 log2 3
, ..., f(2

8)−1
28·8 }.

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we
are given an array A of n integers, and need to re-arrange them in ascending order. Consider the
following bubble sort algorithm:

1. If n = 1, nothing to sort; return.

2. Otherwise, do the following in ascending order of i ∈ [1, n− 1]: if A[i] > A[i+ 1], swap the
integers in A[i] and A[i+ 1].

3. Recurse in the part of the array from A[1] to A[n− 1].

Prove that the algorithm terminates in O(n2) time.

As an example, support that A contains the sequence of integers (10, 15, 8, 29, 13). After Step 2
has been executed once, array A becomes (10, 8, 15, 13, 29).

Solution. Let f(n) be the worst-case running time of bubble sort when A has n elements. From
Step 1, we know:

f(1) = O(1).

From Steps 2-3, we know:

f(n) ≤ f(n− 1) +O(n).

Solving the recurrence (by the expansion method) gives f(n) = O(n2).

Problem 6* (Modified Merge Sort). Let us consider a variant of the merge sort algorithm for
sorting an array A of n elements (we will use the notation A[i..j] to represent the part of the array
from A[i] to A[j]):

5



• If n = 1 then return immediately.

• Otherwise set k = ⌈n/3⌉.

• Recursively sort A[1..k] and A[k + 1..n], respectively.

• Merge A[1..k] and A[k + 1..n] into one sorted array.

Prove that this algorithm runs in O(n log n) time.

Solution. Let f(n) be the worst case time of the algorithm on an array of size n. We have the
following recurrence:

f(1) ≤ c′

f(n) ≤ f(⌈n/3⌉) + f(⌈2n/3⌉) + c · n

where c > 0 and c′ > 0 are constants.

We will prove that f(n) ≤ c′ +α · n log2 n for some constant α to be decided later. Let β ≥ 1 be
another constant that will also be decided later.

Base case (n ≤ β). For n = 1, f(n) ≤ c′ + α · n log2 n always holds. For n ∈ [2, β], we require:

f(n) ≤ c′ + α · n log2 n.

This means:

α ≥
β

max
n=2

f(n)− c′

n · log2 n
(15)

Inductive case. Assuming f(n) ≤ c′ + α · n log2 n for all n ≤ t− 1 where t ≥ β + 1 ≥ 2, we want
to prove f(t) ≤ c′ + α · t log2 t.

f(t) ≤ f(⌈t/3⌉) + f(⌈2t/3⌉) + c · t
(by inductive assumption) ≤ c′ + α⌈t/3⌉ log2⌈t/3⌉+ c′ + α⌈2t/3⌉ log2⌈2t/3⌉+ ct

For all t ≥ 2, we have ⌈t/3⌉ ≤ t/2 and ⌈2t/3⌉ ≤ t. Furthermore, for any real number x, ⌈x⌉ < x+ 1.
Hence:

f(t) ≤ 2c′ + α(t/3 + 1) log2(t/2) + α(2t/3 + 1) log2 t+ ct

= 2c′ + α(t/3 + 1)((log2 t)− 1) + α(2t/3 + 1) log2 t+ ct

= 2c′ + αt log2 t− t(α/3− c)− α+ 2α log2 t

To complete the inductive argument, we want:

2c′ + αt log2 t− t(α/3− c)− α+ 2α log2 t ≤ c′ + αt log2 t

⇔ α(t/3− 2 log2 t+ 1) ≥ ct+ c′ (16)

We consider

β ≥ 128 (17)

6



under which t ≥ β + 1 ≥ 129 and, hence, t/6 > 2 log2 t. Equipped with this, we get from (16):

α ≥ ct+ c′

t/3− 2 log2 t+ 1

⇐ α ≥ 2max{c, c′} · t
t/3− 2 log2 t

⇐ α ≥ 2max{c, c′} · t
t/3− t/6

= 12max{c, c′} (18)

Therefore, by choosing any β satisfying (17) and any α satisfying (15) and (18), we have a working
argument to show that f(n) ≤ c′ + α · n log2 n.

7


