CSCI: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1. Prove $30\sqrt{n} = O(\sqrt{n})$.

Solution. Set $c_1 = 30$ and $c_2 = 1$. The inequality $30\sqrt{n} \le c_1\sqrt{n}$ holds for all $n \ge c_2$. This completes the proof.

Problem 2. Prove $\sqrt{n} = O(n)$.

Solution. Set $c_1 = 1$ and $c_2 = 1$. The inequality $\sqrt{n} \le c_1 n$ holds for all $n \ge c_2$. This completes the proof.

Problem 3. Let f(n), g(n), and h(n) be functions of integer n. Prove: if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution. Since f(n) = O(g(n)), there exist constants c_1, c_2 such that for all $n \ge c_2$, it holds that

$$f(n) \leq c_1 g(n)$$
.

Similarly, since g(n) = O(h(n)), there exist constants c'_1, c'_2 such that for all $n \ge c'_2$, it holds that

$$g(n) \leq c'_1 h(n).$$

Set $c_1'' = c_1 c_1'$ and $c_2'' = \max\{c_2, c_2'\}$. From the above, we know that for all $n \ge c_2''$, it holds that

$$f(n) \le c_1 g(n) \le c_1 c'_1 h(n) = c''_1 h(n).$$

Therefore, f(n) = O(h(n)).

Problem 4. Prove $(2n+2)^3 = O(n^3)$.

Solution. Set $c_1 = 4^3$ and $c_2 = 1$. The inequality $(2n+2)^3 \le c_1 n^3$ holds for all $n \ge c_2$. This completes the proof.

Problem 5. Prove or disprove: $4^n = O(2^n)$.

Solution. Consider the ratio $4^n/2^n$, which equals 2^n . The ratio clearly goes to ∞ when n tends to ∞ . Therefore, the statement is incorrect.

Problem 6. Prove or disprove: $\frac{1}{n} = O(1)$.

Solution. Set $c_1 = 1$ and $c_2 = 1$. The inequality $1/n \le c_1 \cdot 1$ holds for all $n \ge c_2$. This completes the proof.

Problem 7*. Prove that if $k \log_2 k = \Theta(n)$, then $k = \Theta(n/\log n)$.

Solution. Since $k \log_2 k = O(n)$, there exist constants c_1, c_2 such that $k \log_2 k \le c_1 n$ for all $n \ge c_2$. On the other hand, $k \log_2 k = \Omega(n)$ indicates the existence of constants c'_1, c'_2 such that $k \log_2 k \ge c'_1 n$ for all $n \ge c'_2$. Therefore, for all $n \ge \max\{c_2, c'_2\}$, we have:

$$c_1' n \le k \log_2 k \le c_1 n. \tag{1}$$

Set $c_2'' = \max\{c_1, c_2, c_2'\}.$

When $n \ge \max\{c_2'', (1/c_1')^2\}$, we derive from (1):

$$\log_{2}(c'_{1}n) \leq \log_{2}(k \log_{2} k) \leq \log_{2}(c_{1}n)$$

$$\Rightarrow \log_{2} c'_{1} + \log_{2} n \leq \log_{2} k + \log_{2} \log_{2} k \leq \log_{2} c_{1} + \log_{2} n$$

$$\Rightarrow \begin{cases} \log_{2} k \leq \log_{2} c_{1} + \log_{2} n \leq 2 \log_{2} n & (\text{using } n \geq c_{1}) \\ 2 \log_{2} k \geq \log_{2} k + \log_{2} \log_{2} k \geq \log_{2} c'_{1} + \log_{2} n \geq \frac{1}{2} \log_{2} n \end{cases}$$

$$\Rightarrow \frac{\log_{2} n}{4} \leq \log_{2} k \leq 2 \log_{2} n. \tag{2}$$

Combining (1) and (2) leads to

$$\begin{cases} k \le c_1 \frac{n}{\log_2 k} \le 4c_1 \frac{n}{\log_2 n} \\ k \ge c_1' \frac{n}{\log_2 k} \ge \frac{c_1'}{2} \frac{n}{\log_2 n} \end{cases}$$

which means $k = \Theta(n/\log n)$.

Problem 8. We can extend the big-O notation to multiple variables. In this problem, we will focus on two variables, but the idea extends to more variables in a straightforward manner.

Formally, let f(n,m) and g(n,m) be functions of variables n and m satisfying $f(n,m) \ge 0$ and $g(n,m) \ge 0$. We say f(n,m) = O(g(n,m)) if there exist constants c_1 and c_2 such that $f(n,m) \le c_1 \cdot g(n,m)$ holds for all $n \ge c_2$ and $m \ge c_2$.

Prove:

- $n^2m + 100nm = O(n^2m)$.
- $n^2m + 100nm^2 = O(n^2m + nm^2)$.

Solution. There exist constants $c_1 = 101$ and $c_2 = 1$ such that $n^2m + 100nm \le c_1n^2m$ holds for all $n \ge c_2$ and $m \ge c_2$. Therefore, $n^2m + 100nm = O(n^2m)$.

There exist constants $c_1 = 100$ and $c_2 = 1$ such that $n^2m + 100nm \le c_1(n^2m + nm^2)$ holds for all $n \ge c_2$ and $m \ge c_2$. Therefore, $n^2m + 100nm = O(n^2m + nm^2)$.