CSCI2100: Regular Exercise Set 12

Prepared by Yufei Tao

Problem 1. Let $G=(V, E)$ be a directed graph. Suppose that we perform BFS starting from a source vertex s, and obtain a BFS-tree T. For any vertex $v \in V$, denote by $l(v)$ the level of v in the BFS-tree. Prove that BFS en-queues the vertices v of V in non-descending order of $l(v)$.

Solution. Take any vertices u, v such that $l(u)>l(v)$. Let $v_{1}, v_{2}, \ldots, v_{l(v)}$ be the vertices on the path from the root to v in T; note that $v_{1}=s$ and $v_{l(v)}=v$. Let $u_{1}, u_{2}, \ldots, u_{l(v)}$ be the last $l(v)$ vertices on the path from the root to u in T; note that $u_{1} \neq s$ and $u_{l(v)}=u$. It thus follows that v_{1} is en-queued before u_{1}. Remember that BFS en-queues v_{2} when de-queuing v_{1}, and similarly, enqueues u_{2} when de-queuing u_{1}. By the FIFO property of the queue, we know that v_{2} is en-queued before u_{2}. By the same reasoning, v_{3} is en-queued before u_{3}, v_{4} before u_{4}, etc. This means that v is before u.

Problem 2. Let $G=(V, E)$ be a directed graph. Suppose that we perform BFS starting from a source vertex s, and obtain a BFS-tree T. For any vertex $v \in V$, prove that the path from s to v in T is a shortest path from s to v in G.

Solution. We will instead prove the following claim: all the vertices with shortest path distance l from s are at level l (recall that the root is at level 0). This will establish the conclusion in Problem 3 because the path from s to a level- l node v in T has length l.

We will prove the claim by induction on l. The base case where $l=0$ is obviously true.
Assuming that the claim holds for all $l \leq k-1(k \geq 1)$, next we prove that the claim is also true for $l=k$. Let v be a vertex with shortest path distance k from s. Consider all the shortest paths from s to v. From every such shortest path, take the vertex immediately before v (i.e., the predecessor of v in that path), and put that vertex into a set. Let S be the set of all such "predecessors of v " collected. Let u be the vertex in S that is the earliest one entering the queue. We know that the shortest path distance from s to u is $k-1$. It thus follows from the inductive assumption that u is at level $k-1$ of T.

Consider the moment when u is removed from the queue in BFS. We will argue that the color of v must be white. Hence, BFS makes v a child of u, thus making v at level k.

Suppose for contradiction that the color of v is gray or black. This means that v has been put into the queue when another vertex u^{\prime} was de-queued earlier. From the conclusion of Problem 2 and the definition of u, we know that $l\left(u^{\prime}\right)<l(u)$ (otherwise, $l\left(u^{\prime}\right)=l(u)=k-1$; by the inductive assumption, this means that the shortest path distance from s to u^{\prime} is $k-1$, which further implies $u^{\prime} \in S$, contradicting the definition of u). From the inductive assumption, this means that the shortest path distance of u^{\prime} from s that is less than $k-1$, implying that the shortest path distance from s to v is less than k, thus giving a contradiction.

Problem 3. Let $G=(V, E)$ be an undirected graph. We will denote an edge between vertices u, v as $\{u, v\}$. Next, we define the single source shortest path (SSSP) problem on G. Define a path from s to t as a sequence of edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{t}, v_{t+1}\right\}$, where $t \geq 1, v_{1}=s$, and $v_{t+1}=t$. The length of the path equals t. Then, the SSSP problem gives a source vertex s, and asks to find shortest paths from s to all the other vertices in G. Adapt BFS to solve this problem in $O(|V|+|E|)$ time. Once again, you need to produce a BFS tree where, for each vertex $v \in V$,
the path from the root to v gives a shortest path from s to v.
Solution. Same as BFS, except that when a vertex v is de-queued, we inspect all its neighbors (as opposed to its out-neighbors as in the directed version).

Problem 4 (Connected Components). Let $G=(V, E)$ be an undirected graph. A connected component (CC) of G includes a set $S \subseteq V$ of vertices such that

- For any vertices $u, v \in S$, there is a path from u to v, and a path from v to u.
- (Maximality) It is not possible to add any vertex into S while still ensuring the previous property.

For example, in the above graph, $\{a, b, c, d, e\}$ is a CC, but $\{a, b, c, d\}$ is not, and neither is $\{g, f, e\}$.
Prove: Let S_{1}, S_{2} be two CCs. Then, they must be disjoint, i.e., $S_{1} \cap S_{2}=\emptyset$.
Solution. Suppose that a vertex v is in $S_{1} \cap S_{2}$. Then, for any vertex $u_{1} \in S_{1}$ and $u_{2} \in S_{2}$, we know:

- There is a path from u_{1} to u_{2} by way of v.
- There is a path from u_{2} to u_{1} by way of v.

This violates the fact that S_{1} and S_{2} must be maximal.
Problem 5. Let $G=(V, E)$ be an undirected graph. Describe an algorithm to divide V into a set of CCs. For example, in the example of Problem 5, your algorithm should return 3 CCs: $\{a, b, c, d, e\},,\{g, f\}$, and $\{h, i, j\}$.

Solution. Run BFS starting from an arbitrary vertex in V. All the vertices in the BFS-tree constitute the first CC. Then, start another BFS from an arbitrary vertex that is still white. All the vertices in this BFS-tree constitute another CC. Repeat this until V has no more white vertices.

