CSCI2100: Regular Exercise Set 1

Prepared by Yufei Tao

Problem 1. Let x be a real value. Define $\lfloor x\rfloor$ to be the largest integer that does not exceed x. For example, $\lfloor 2.5\rfloor=2$, whereas $\lfloor 3\rfloor=3$.

Suppose that you are given an integer $n \geq 2$ in (a register of) the CPU. Write an algorithm to compute the value of $\left\lfloor\log _{2} n\right\rfloor$ in no more than $100 \log _{2} n$ time.

Problem 2. The following figure shows an input to the dictionary search problem.

$$
\begin{array}{|l|}
\hline 3 & 14 & 25 & 26 & 32 & 40 & 45 & 52 & 55 & 59 & 65 & 68 & 69 & 81 & 86 & 94 & & & & & & & & & & & & & \\
\hline
\end{array}
$$

Describe how binary search works using the input.
Problem 3 (Predecessor Search). Let us first define the notion of predecessor. Let S be a set of integers. Given an integer v, the predecessor of v in S is the largest integer in S that is at most v. For example, suppose $S=\{3,14,15,26,32,40\}$. The predecessor of 25 is 15 , while that of 26 is 26.

Consider the following problem. You are given a set S of n integers, which are stored at memory cells $1,2, \ldots, n$ in ascending order. The value of n is given in the CPU, and so is an integer v. The following shows an example with $n=16$ and $v=35$.

$$
\begin{array}{|l|}
\hline 3 & 14 & 25 & 26 & 32 & 40 & 45 & 52 & 55 & 59 & 65 & 68 & 69 & 81 & 86 & 94 & & & & & & & & & & & & & \\
\hline
\end{array}
$$

Describe an algorithm to find the predecessor of v. Your algorithm should have running time at most $100+100 \log _{2} n$.

Problem 4 (Prefix Counting). Consider the following problem. You are given a set S of n integers, which are stored at memory cells $1,2, \ldots, n$ in ascending order. The value of n is given in the CPU, and so is an integer v. The following shows an example with $n=16$ and $v=35$.

Describe an algorithm to find the number of integers in S that are at most v. In the above example, for instance, you should return 5. Your algorithm should have running time at most $100+100 \log _{2} n$.

Problem 5 (The 3-Sum Problem). Consider the following problem. The input S consists of n integers, which are given at memory cells $1,2, \ldots, n$, arranged in ascending order. The value of n is given in the CPU. So is a value v. The following shows an example with $n=16$ and $v=150$.

Describe an algorithm to determine whether S has 3 numbers that sum up to v. In the above example, the answer is "yes" because $150=40+45+65$. Your algorithm should have running time at most $100+100 \cdot n^{2} \log _{2} n$.

