Week 3 Tutorial

CSE Dept, CUHK
The Predecessor Search Problem

Problem Input

- An array A of n integers in ascending order
- A search value q

Goal:

Find the predecessor of q in A.

Remark: the predecessor of q is the largest element in A that is smaller than or equal to q.
Example

1. If $q = 23$, the predecessor is 21.
2. If $q = 21$, the predecessor is also 21.
3. If $q = 1$, no predecessor.

\[
\begin{array}{cccccccc}
2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
\end{array}
\]

A
Binomial Search

- If A contains q, binary search will find q directly.
- If A does not contain q, the predecessor of q can be easily inferred from where the algorithm terminates.

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>13</th>
<th>21</th>
<th>34</th>
<th>55</th>
</tr>
</thead>
</table>

A
The Two-Sum Problem

Input

- A array of n integers in ascending order.
- An integer v.

Goal:

Determine whether A contains two different integers x and y such that $x + y = v$.

CSCI2100 2021 Fall, CUHK
Example

- If $v = 30$, answer “yes”.
- If $v = 25$, answer “no”.

| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 |
Solution

Use binary search as a building brick.

Key idea: For each x in the array, look for $v - x$ with binary search.
Analysis

This algorithm performs at most \(n \) binary searches.

Cost of the algorithm: \(O(n \log n) \)

Can you do even better?
Try to solve this problem in \(O(n) \) time (not covered in this tutorial).
Recall the definition of $f(n) = O(g(n))$:

$$f(n) = O(g(n)),$$ if there exist two positive constants c_1 and c_2 such that $f(n) \leq c_1 \cdot g(n)$ holds for all $n \geq c_2$.

Another approach is to compute $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ and decide as follows:

- $f(n) = O(g(n))$, if the limit is bounded by an constant;
- $f(n) \neq O(g(n))$, if the limit is ∞.

Note: there is a third possibility for the limit, where the approach will fail. We will discuss this at the end of the tutorial.
Exercise 1

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $f(n) = O(g(n))$.
Exercise 1

Let \(f(n) = 10n + 5 \) and \(g(n) = n^2 \). Prove \(f(n) = O(g(n)) \).

Method 1: Constant finding

1. Fix \(c_1 \)
2. Solve for \(c_2 \)
3. If a \(c_2 \) cannot be found, go back to Step 1 and try a different \(c_1 \).
Exercise 1

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $f(n) = O(g(n))$ (try $c_1 = 5$)

\[
\begin{align*}
 f(n) &\leq c_1 \cdot g(n) \\
 \Leftrightarrow &\quad 10n + 5 \leq c_1 \cdot n^2 \\
 \Leftrightarrow &\quad 5(2n + 1) \leq 5 \cdot n^2 \\
 \Leftrightarrow &\quad 2n + 1 \leq n^2 \\
 \Leftrightarrow &\quad 2 \leq (n - 1)^2 \\
 \Leftrightarrow &\quad 3 \leq n
\end{align*}
\]

Hence, it suffices to set $c_2 = 3$.
Exercise 1

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $f(n) = O(g(n))$.

Method 2: Limit

$$\lim_{n \to \infty} \frac{10n + 5}{n^2} = \lim_{n \to \infty} \frac{10 + 5/n}{n} = 0.$$

Hence, $f(n) = O(g(n))$.
Exercise 2

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 1: Constant finding (prove by contradiction)

Suppose that $g(n) = O(f(n))$, i.e., there are constants c_1, c_2 such that, for all $n \geq c_2$, we have

\[
 n^2 \leq c_1 \cdot (10n + 5) \\
 \Rightarrow \quad n^2 \leq c_1 \cdot 20n \\
 \Leftrightarrow \quad n \leq 20c_1
\]

which cannot hold for all $n \geq c_2$, regardless of c_2. This gives a contradiction.
Exercise 2

Let $f(n) = 10n + 5$ and $g(n) = n^2$. Prove $g(n) \neq O(f(n))$.

Method 2: Limit

$$\lim_{{n \to \infty}} \frac{n^2}{10n + 5} = \infty.$$

Hence, $g(n) \neq O(f(n))$.
In some rare scenarios, the limit approach may fail. We will see an example next.
Consider \(f(n) = 2^n \). Define \(g(n) \) as:

- \(g(n) = 2^n \) if \(n \) is even;
- \(g(n) = 2^{n-1} \) otherwise.

Since \(f(n) \leq 2g(n) \) holds for all \(n \geq 1 \), it holds that \(f(n) = O(g(n)) \).

However, \(\lim_{n \to \infty} \frac{f(n)}{g(n)} \) does not exist, because it keeps jumping between 1 and 2 as \(n \) increases!