BFS, DFS, and the Proof of White Path Theorem

CSCI2100 Tutorial 11
Introduction

In this tutorial, we will first demonstrate BFS and DFS using examples, and then prove the white path theorem.
Let’s first go over the BFS algorithm through a running example on a directed graph.

Suppose we start from the vertex a, namely a is the root of BFS tree.
Firstly, set all the vertices to be white. Then, create a queue Q, en-queue the starting vertex a and color it gray. Create a BFS Tree with a as the root.

\[Q = \begin{array}{c}
 a \\
\end{array} \]
BFS

BFS Tree

\[Q = \quad a \quad c \]
BFS

\[Q = \overline{a \ c \ f} \]
BFS

BFS Tree

Q = a c f b

BFS, DFS, and the Proof of White Path Theorem
BFS Tree

\[Q = c \quad f \quad b \]

BFS, DFS, and the Proof of White Path Theorem
BFS

\[Q = c f b d \]
BFS

Q = f b d
BFS

\[Q = \overline{b d} \]

BFS Tree

- **a**
- **b**
- **c**
- **f**
- **d**
- **e**
- **g**

CSCI2100, The Chinese University of Hong Kong

BFS, DFS, and the Proof of White Path Theorem
BFS

\[
Q = \underline{b \ d \ e}
\]
BFS

$Q = \underline{d e}$
BFS

\[Q = \overline{d e g} \]

BFS Tree

CSCI2100, The Chinese University of Hong Kong
BFS Tree

\[Q = \underline{e \ g} \]

BFS, DFS, and the Proof of White Path Theorem
BFS

BFS Tree

\[
\begin{align*}
Q &= \underline{g} \\
\end{align*}
\]
BFS

\[Q = \text{__________} \]

Q is empty, algorithm terminated.
Single Source Shortest Path (SSSP) with Unit Weights

Input

A directed graph $G=(V, E)$. A vertex s in V as the starting point.

Goal

To find, for every other vertex $t \in V \setminus \{s\}$, a shortest path from s to t, unless t is unreachable from s.

Example

```
a       c       f       b
  
  d       e

  g
```

a is assigned as the starting point.
First step: Do BFS on G using a as the starting point

Follow the BFS Tree generated by the BFS algorithm, we can find the shortest paths required.
Let’s first go over the DFS algorithm through a running example on a directed graph.

Suppose we start from the vertex a, namely a is the root of DFS tree.

Input
DFS

Firstly, set all the vertices to be white. Then, create a stack S, push the starting vertex a into S and color it gray. Create a DFS Tree with a as the root. We also maintain the time interval $I(u)$ of each vertex u.

$$S = (a).$$
Top of stack: \(a \), which has white out-neighbors \(b, c, f \). Suppose we access \(c \) first. Push \(c \) into \(S \).

\[
S = (a, c).
\]

DFS Tree

<table>
<thead>
<tr>
<th>DFS Tree</th>
<th>Time Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(I(a) = [1,)</td>
</tr>
<tr>
<td>(c)</td>
<td>(I(c) = [2,)</td>
</tr>
</tbody>
</table>
After pushing d into S:

$S = (a, c, d)$.

DFS Tree

Time Interval

- a: $I(a) = [1,]$
- c: $I(c) = [2,]$
- d: $I(d) = [3,]$
Now d tops the stack. It has white out-neighbors e, f and g. Suppose we visit g first. Push g into S.

$S = (a, c, d, g)$.
After pushing e into S:

$S = (a, c, d, g, e)$.

DFS Tree and Time Interval

<table>
<thead>
<tr>
<th>Node</th>
<th>Time Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$[1, \]$</td>
</tr>
<tr>
<td>c</td>
<td>$[2, \]$</td>
</tr>
<tr>
<td>d</td>
<td>$[3, \]$</td>
</tr>
<tr>
<td>g</td>
<td>$[4, \]$</td>
</tr>
<tr>
<td>e</td>
<td>$[5, \]$</td>
</tr>
</tbody>
</table>
DFS

\[e \text{ has no white out-neighbors. So pop it from } S, \text{ and color it black.} \]
Similarly, \(g \) has no white out-neighbors. Pop it from \(S \), and color it black.

\(S = (a, c, d). \)
Now d tops the stack again. It still has a white out-neighbor f. So, push f into S.

\[S = (a, c, d, f). \]
After popping \(f, d, c \):

\[
\begin{align*}
S &= (a). \\
\text{DFS Tree} & \quad \text{Time Interval} \\
I(a) &= [1,] \\
I(c) &= [2, 11] \\
I(d) &= [3, 10] \\
I(g) &= [4, 7] \\
I(e) &= [5, 6] \\
I(f) &= [8, 9]
\end{align*}
\]
Now a tops the stack again. It still has a white out-neighbor b. So, push b into S.

\[
\begin{align*}
I(a) &= [1, \] \\
I(c) &= [2, 11] \\
I(d) &= [3, 10] \\
I(g) &= [4, 7] \\
I(e) &= [5, 6] \\
I(f) &= [8, 9] \\
I(b) &= [12, \] \\
\end{align*}
\]

$S = (a, b)$.

DFS Tree

Time Interval

A diagram is shown illustrating a graph with nodes labeled a, b, c, d, e, f, and g, and arrows indicating the direction of traversal. The DFS tree is depicted with nodes and arrows, and the time intervals for each node are listed in a table format.
After popping b and a:

$$S = ()$$

Now, there is no white vertex remaining, our algorithm terminates.
Cycle Detection

Problem Input:
A directed graph.

Problem Output:
A boolean indicating whether the graph contains a cycle.
First Step: DFS

Cycle Theorem: Let T be an arbitrary DFS-forest of graph G. G contains a cycle if and only if there is a back edge with respect to T.
Second Step: Try to Find Back Edge

DFS Tree

<table>
<thead>
<tr>
<th>Node</th>
<th>Time Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>[1, 14]</td>
</tr>
<tr>
<td>c</td>
<td>[2, 11]</td>
</tr>
<tr>
<td>d</td>
<td>[3, 10]</td>
</tr>
<tr>
<td>e</td>
<td>[5, 6]</td>
</tr>
<tr>
<td>f</td>
<td>[8, 9]</td>
</tr>
<tr>
<td>g</td>
<td>[4, 7]</td>
</tr>
<tr>
<td>b</td>
<td>[12, 13]</td>
</tr>
</tbody>
</table>

Parenthesis Theorem: If \(u \) is a proper descendant of \(v \) in a DFS-tree of \(T \), then \(I(u) \) is contained in \(I(v) \).
We proved the cycle theorem in the lecture. Recall that our proof relies on another theorem called the **white path theorem**, which we will establish in the rest of the tutorial.
Proof of White Path Theorem

Recall:

White Path Theorem: Let u be a vertex in G. Consider the moment when u is pushed into the stack in the DFS algorithm. Then, a vertex v becomes a proper descendant of u in the DFS-forest if and only if the following is true:

- We can go from u to v by travelling only on white vertices.
Example

\[S = \{a, c\} \]

DFS Tree

```
    a
     \downarrow
      c
     / \  \  /
    b  f  d  e
     \  /  \  /
      g  f  e
```

Final DFS Tree

```
    a
     \downarrow
      c
     /  \  /
    b  d  f
     \  /  /
      e  g
```
Lemma: Consider any vertex u in a DFS-tree. If a node x enters the stack while u is in the stack, then x is a descendant of u in a DFS-tree.

The proof is left to you.

\[
S = (a, c, d, f).
\]
Proof of White Path Theorem

White Path Theorem: Let \(u \) be a vertex in \(G \). Consider the moment when \(u \) is pushed into the stack in the DFS algorithm. Then, a vertex \(v \) becomes a proper descendant of \(u \) in the DFS-forest if and only if the following is true:

- We can go from \(u \) to \(v \) by traveling on only white vertices.

Proof: The “only-if direction” (\(\Rightarrow \)): Let \(v \) be a descendant of \(u \) in the DFS tree. Let \(\pi \) be the path from \(u \) to \(v \) in the tree. By the lemma on Slide 37, all the nodes on \(\pi \) entered the stack after \(u \). Hence, \(\pi \) must be white at the moment when \(u \) enters the stack.
The “if direction” \((\Leftarrow)\): When \(u\) enters the stack, there is a white path \(\pi\) from \(u\) to \(v\). We will prove that all the vertices on \(\pi\) must be descendants of \(u\) in the DFS-forest.

Suppose that this is not true. Let \(v'\) be the first vertex on \(\pi\) — in the order from \(u\) to \(v\) — that is not a descendant of \(u\) in the DFS-forest. Clearly \(v' \neq u\). Let \(u'\) be the vertex that precedes \(v'\) on \(\pi\); note that \(u'\) is a descendant of \(u\) in the DFS-forest.

By the lemma on Slide 37, \(u'\) entered the stack after \(u\).
Proof of White Path Theorem

Consider the moment when u' turns black (i.e., u' leaving the stack). Node u must remain in the stack currently (first in last out).

1. The color of v' cannot be white.
 Otherwise, v' is a white out-neighbor of u, which contradicts the fact that u' is turning black.

2. Hence, the color of v' must be gray or black.
 Recall that when u entered stack, v' was white. Therefore, v' must have been pushed into the stack while u was still in the stack. By the lemma on Slide 37, v' must be a descendant of u. This, however, contradicts the definition of v'.

\[u \rightarrow u' \rightarrow v' \rightarrow v \]