Problem 1. Let S be a set of integer pairs of the form (id, v). We will refer to the first field as the \textit{id} of the pair, and the second as the \textit{key} of the pair. Design a data structure that supports the following operations:

- Insert: add a new pair (id, v) to S (you can assume that S does not already have a pair with the same id).
- Delete: given an integer t, delete the pair (id, v) from S where $t = id$, if such a pair exists.
- DeleteMin: remove from S the pair with the smallest key, and return it.

Your structure must consume $O(n)$ space, and support all operations in $O(\log n)$ time where $n = |S|$.

Problem 2. Describe how to implement the Dijkstra’s algorithm on a graph $G = (V, E)$ in $O((|V| + |E|) \cdot \log |V|)$ time.

Problem 3. Prove: in a weighted undirected graph $G = (V, E)$ where all the edges have distinct weights, the minimum spanning tree (MST) is unique.

Problem 4. Describe how to implement the Prim’s algorithm on a graph $G = (V, E)$ in $O(|V| + |E|) \cdot \log |V|)$ time.

Problem 5*. In the lecture, we proved the correctness of Dijkstra’s algorithm in the scenario where all the edges have positive weights. Prove: the algorithm is still correct if we allow edges to take non-negative weights (i.e., zero weights are allowed).