CSCI 2100 Tutorial 9

WU Hao

Outline

- A review on the binary heap
- Regular exercise 8 problem 4
- Special exercise 8 problem 4

Binary Heap (Review)

Let S be a set of n integers. A binary heap on S is a binary tree T satisfying:

1. T is a complete binary tree.
2. Every node u in T stores a distinct integer in S , called the key of u.
3. If u is an internal node, the key of u is smaller than those of its child nodes.

The third property may be violated after insertion and delete-min.

Heap Property Violation

Original:

After insertion:

After delete-min:

Restoring the Heap Property After Insertion

Swap up:
If node u has a smaller key than its parent p, swap the keys of u and p. Set u to p, and repeat until there is no violation.

Swap Up

Swap up at most $O(\log n)$ times to restore the heap property.

Restoring the Heap Property After Delete-min

Swap down:
Let v be the child of node u with a smaller key. If the key of u is larger than the key of v, swap the keys of u and v. Set u to v, and repeat until there is no violation.

Swap Down

Swap down at most $O(\log n)$ times to restore the heap property.

Regular Exercise 8 Problem 4

Problem:
Suppose that we have k sorted arrays (in ascending order) $A_{1}, A_{2}, \ldots, A_{k}$ of integers. Let n be the total number of integers in those arrays.

Describe an algorithm to produce an array that sorts all the n integers in ascending order in $O(n \log k)$ time.

Solution 1: Merge Operation

- Input
$\mathrm{k}=8, \mathrm{n}=20$

2	3	6	8	9	10	11	12	17	18	19
$\quad 2$ arrays										
1	5	7	15	23	25	28	30	40		

Solution 1: Merge Operation

Merge

1	2	3	5	6	7	8	9	10	11	12	15	17	18	19	23	25	28	30	40

Need $O(\log k)$ passes. Each pass takes $O(n)$ time on n integers (the cost of merging is proportional to the number of elements involved).

Therefore, the total time complexity is $O(n \log k)$.

Solution 2: Binary Heap

- Input:
$\mathrm{k}=3, \mathrm{n}=15$

| 2 | 15 | 30 | 40 | 47 |
| :--- | :--- | :--- | :--- | :--- |\quad| 5 | 8 | 11 | 12 |
| :--- | :--- | :--- | :--- |

9	14	21	26	27	37

- Output

2	5	8	9	11	12	14	15	21	26	27	30	37	40	47

Solution 2: Binary Heap

Ideas:

- A binary heap of size k can perform delete-min and insertion in $O(\log k)$ time.
- Perform a delete-min to obtain the smallest integer that has not been output.
- After delete-min, insert a new integer into the heap from the integer's origin array.

Solution 2: Binary Heap

| 2 | 15 | 30 | 40 | 47 |
| :--- | :--- | :--- | :--- | :--- |\quad| 5 | 8 | 11 | 12 |
| :--- | :--- | :--- | :--- |

9	14	21	26	27	37

Solution: Binary Heap

Initialization cost:
creating the output array: $O(n)$
Processing cost:
n insertions: $O(n \log k) \quad \mathrm{n}$ delete-min: $O(n \log k)$
Total time complexity:
$O(n \log k)$

Special Exercise 8 Problem 4

Problem:
Let S be a dynamic set of integers. At the beginning, S is empty. Then, new integers are added to it one by one, but never deleted. Let k be a fixed integer. Describe an algorithm which achieves the following guarantees:

- Space consumption $O(k)$.
- Insert(e): Insert a new element e into S in $O(\log k)$ time.
- Report-top- k : Report the k largest integers in S in $O(k)$ time.

Special Exercise 8 Problem 4

Example:
Suppose that $k=3$, and the sequence of integers inserted is $83,21,66,5,24,76,92,33,43, \ldots$.

The 3 largest integers are 83, 66, 24 after the insertion of 24, they become 83, 66, 76 after the insertion of 76, and so on.

Solution

Intuition:

- A heap H of size k takes $O(k)$ space.
- H performs insertion and delete-min in $O(\log k)$ time.
- The root r of H stores the minimal integer in H.
- Make sure that H always contains the k largest integers. If the incoming integer m is larger than the minimal integer stored in H. We perform delete-min and insert(m). Otherwise, we do nothing.

Solution

- Input:
$83,21,66,5,24,76,92,33,43, \ldots$, and $k=3$

Solution

Maintain a binary heap H with k integers.

1. Insert first k integers into H. Each insertion takes $O(\log k)$ time.
2. For a newly added integer e from the sequence, compare it with the integer e_{r} stored at the root r of H :
(1) If $e>e_{r}$, perform delete-min and insert(e), which take
$O(\log k)$ time in total.
(2) Otherwise, ignore e.

Solution

Report-top-k:
Report all integers in H by traversing the heap.

A challenging problem for you

- For this problem, we can actually achieve
- O(k) space
- O (1) amortized insertion time
- O(k) top-k report time.
- Hint: k-selection.

