
Rooted Tree Implementation and Traversal

CSCI2100
Tutorial 8

How to store a rooted tree in memory?

8

10 1

2

3

4

5

6

7

9

root

Storing a tree

8

10 1

2

3

4

5

6

7

9

root

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a1 a3

a10

a4 a8

a9 a6 a2

a7

For each node, create a linked list of pointers (one per child).
In general, the space of storing n nodes is O(n).

address of node 1memory allocated to node 1

Rooted tree traversal

Problem: Given the root of a tree, count the number of nodes in the
tree.
Goal: O(n) time.

We will achieve the purpose by giving an algorithm to traverse the tree.

Rooted tree traversal

8

10 1

2

3

4

5

6

7

9

root

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a1 a3

a10

a4 a8

a9 a6 a2

a7

address of the
linked list of node 1

Given a5, how do we find the number of nodes in the tree?

memory allocated to node 1

A recursive view

• Recursively count the subtree of
each child of the root.

8

10 1

2

3

4

5

6

7

9

root

𝑇

𝑇

𝑇

A recursive view

• Recursively count the subtree of
each child of the root.

𝒄𝒐𝒖𝒏𝒕(𝑟):
 𝑟𝑒𝑠𝑢𝑙𝑡 = 1

𝐟𝐨𝐫 each child 𝑢 of 𝑟:
 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝒄𝒐𝒖𝒏𝒕(𝑢)
 return 𝑟𝑒𝑠𝑢𝑙𝑡

5
root

𝑇

𝑇

𝑇

Analysis – the smart way

10

5 6

4

7

9

1

3

8

2

root • Intuitively, we visit each edge twice
(descending once and ascending once).

• So the cost is

Analysis – the “standard” way

Let denote the running time on a tree of nodes (we denote
as the number of nodes in T).

root

𝑇 𝑇 𝑇 𝑇

𝒄𝒐𝒖𝒏𝒕(𝑟):
 𝑟𝑒𝑠𝑢𝑙𝑡 =1

𝐟𝐨𝐫 each child 𝑢 of 𝑟:
 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝒄𝒐𝒖𝒏𝒕(𝑢)
 return 𝑟𝑒𝑠𝑢𝑙𝑡

Analysis – the “standard” way

root

𝑇 𝑇 𝑇 𝑇

Where are the subtrees at the child
nodes of the root.
We can prove:

by the substitution method (left to you).

The recursive implementation may not work in
today’s operating systems
• Every operating system today limits the depth of recursion

• Typically at the order of hundreds.

• Our earlier program will crash if the tree is too tall.

• Next, we will see a non-recursive implementation based on a stack.

A stack-based implementation

𝒂𝟓

*

A stack-based implementation

𝒂𝟓

a pointer remembering the child under processing

*

A stack-based implementation

𝒂𝟓

𝒂𝟗

push the child into the stack

*

*

A stack-based implementation

𝒂𝟓

𝒂𝟗

pointer to the first child of node 9

*

*

A stack-based implementation

𝒂𝟓

𝒂𝟗

𝒂𝟏𝟎

push the child into the stack

*

*

*

A stack-based implementation

𝒂𝟓

𝒂𝟗

𝒂𝟏𝟎

node 10 has no children.

A stack-based implementation

𝒂𝟓

𝒂𝟗

a10 has been popped

*

*

A stack-based implementation

𝒂𝟓

𝒂𝟗

a10 has been popped

node 9 has no more children.

*

*

A stack-based implementation

𝒂𝟓

a9 has been popped

*

A stack-based implementation

𝒂𝟓

moving the pointer to the next child of node 5

*

A stack-based implementation

𝒂𝟓

𝒂𝟔

push the next child into the stack

The algorithm then continues in the same fashion.

*

*

A stack-based implementation
• Running time = O(n)

because very node in
the linked lists is
pushed once and
popped once.

