More on Hashing

CSCI2100 Tutorial 7
Shangqi Lu

Review on Hash Table

- Given a set of n integers S in $[1, U]$
- Main idea: divide S into a number m of disjoint subsets
- Guarantees
- Space consumption: $O(n+m)$
- Preprocessing cost: $O(n+m)$
- Query cost: $O(1+n / m)$ in expectation

Review on Hash Table

- Given a set of n integers S in $[1, U]$
- Main idea: divide S into a number m of disjoint subsets
- Set $m=\Theta(n)$
- Guarantees
- Space consumption: $O(n)$
- Preprocessing cost: $O(n)$
- Query cost: $O(1)$ in expectation

Review on Hash Table

- Divide S into a number m of disjoint subsets:
- Choose a function h from $[1, U]$ to $[1, m]$
- For each $i \in[1, m]$, create an empty linked list L_{i}
- For each $x \in S$:
- Compute $h(x)$
- Insert x into $L_{h(x)}$
- Important:
- Choose a good hash function h

Review on Hash Table

- Construct a universal family
- Pick a prime number p such that $p \geq m$ and $p \geq U$
- Choose an integer α from [1, $p-1$] uniformly at random
- Choose an integer β from [0, $p-1$] uniformly at random
- Define a hash function:

$$
h(k)=1+((\alpha k+\beta) \bmod p) \bmod m
$$

Example

- Let $S=\{19,36,63,53,14,9,70,26\}$
- We choose $m=10, p=71$, suppose that α and β are randomly chosen to be 3 and 7 , respectively
- $h(k)=1+(((3 k+7) \bmod 71) \bmod 10)$

Hash Table

- Let H be the universal family defined in the previous slides
- Given a function $h \in H$ and an integer $q \in[1, U]$:
- Define $\operatorname{cost}(h, q)=|\{x \in S \mid h(x)=h(q)\}|$
query value

	1	2	\ldots	U	$M \operatorname{lnx}$
h_{1}	$\operatorname{cost}\left(h_{1}, 1\right)$	$\operatorname{cost}\left(h_{1}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{1}, U\right)$	$O(n)$
h_{2}	$\operatorname{cost}\left(h_{2}, 1\right)$	$\operatorname{cost}\left(h_{2}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{2}, U\right)$	$O(n)$
\ldots	\ldots	\ldots	\ldots	\ldots	$O(n)$
$h_{\|H\|}$	$\operatorname{cost}\left(h_{\|H\|}, 1\right)$	$\operatorname{cost}\left(h_{\|H\|}, 2\right)$	\ldots	$\operatorname{cost}\left(h_{\|H\|}, U\right)$	$O(n)$
Average	$O(1)$	$O(1)$	$O(1)$	$O(1)$	

Hash Table

- Worst-case expected query cost: $O(1)$
- Pick a hash function from a universal family
- Worst-case query cost: $O(n)$
- All elements are hashed into the same value
- Question:
- Can we improve the worst-case query cost?

Hash Table

- Replace linked lists with arrays
- Sort the arrays, cost $O(n \log n)$ for preprocessing

Hash Table

- Query: whether 29 exists
- Step 1:
- Access the hash table to obtain the address of corresponding array
- O (1) time

Hash Table

- Query: whether 29 exists
- Step 2:
- Perform binary search on the array to find the target
- $O(\log n)$ time
- Overall worst-case complexity: $O(\log n)$

Hash Table

- This method retains the $O(1)$ worst-case expected query time.
- Proof:
- Suppose we look up an integer q
- Define random variable $X_{h(q)}$ to be the length of array that corresponds to the hash value $h(q)$
- Expected query time:
- $\mathrm{E}\left[\log _{2} X_{h(q)}\right]=\sum_{l=1}^{n} \log _{2} l \operatorname{Pr}\left(X_{h(q)}=l\right)$
- $\quad \leq \sum_{l=1}^{n} l \operatorname{Pr}\left(X_{h(q)}=l\right)$
- $\quad=\mathrm{E}\left[X_{h(q)}\right]$
- $\quad=O(1)$

The Two-Sum Problem (revisited)

- Problem Input:
- A set S of unsorted n distinct integers
- The value n has been placed in Register 1
- A positive integer v has been placed in Register 2
- Goal:
- Determine whether if there exist two different integers x and y in S such that $x+y=v$
- For example:
- Find a pair whose sum is 20

11	3	17	7	2	13

Solution 1: Binary Search the Answer

- Goal: Find a pair (x, y) such that $x+y=v$
- Observe that given $\mathrm{x}, y=v-x$, is determined
- Solution:
- Sort S
- For each x in S :
- set y as $v-x$
- Use binary search to see if y exists in the sequence
- Time complexity: $O(n \log n)$

Solution 2: Using the Hash Table

- Step 1 and 2:
- Choose a hash function h and create an empty hash table H
- Insert each x in S into $L_{h(x)}$
- Step 3:
- For each x in S:
- Set y as $v-x$
- Check if y is in the hash table; if it is, return yes
- Return no

Time Complexity

- Step 1 and 2: $O(n)$
- Step 3:
- Let X_{i} be the query time for the i-th integer in S
- We know $E\left[X_{i}\right]=O(1)$
- Define $X=\sum_{i} X_{i}$
- The worst-case expected cost of step 3:
- $E[\mathrm{X}]=\sum_{i} E\left[\mathrm{X}_{\mathrm{i}}\right]=0(\mathrm{n})$
- Overall: $O(n)$ in expectation

