CSCI 2100 Tutorial 6

WU Hao

Outline

- Counting sort again - a linked list version
- Dynamic array vs linked list
- Dynamic array: space and update tradeoff

Multi-set Sorting Problem

 (Review)- Problem input:
- An array containing n key-value pairs, where each key is an integer from [1, U].
E.g.: $(93,1155123456)$
- Goal:
- An array storing all pairs in nondescending order of key.

Multi-set Sorting Problem

- Input: $\left\{\{9, v 1\},\{7, v 2\},\left\{2, v_{3}\right\},\left\{6, v_{4}\right\},\left\{2, v_{5}\right\},\left\{7, v_{6}\right\},\left\{1, v_{7}\right\},\left\{2, v_{8}\right\}\right\}$
- Initially we will have the following array

Input Array

| k_{1} | v_{1} | k_{2} | v_{2} | k_{3} | v_{3} | k_{4} | v_{4} | k_{5} | v_{5} | k_{6} | v_{6} | k_{7} | v_{7} | k_{8} | v_{8} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | v_{1} | 7 | v_{2} | 2 | v_{3} | 6 | v_{4} | 2 | v_{5} | 7 | v_{6} | 1 | v_{7} | 2 | v_{8} |

- Rearrange the elements so that their keys are sorted:

Sorted Array

1	v_{7}	2	v_{3}	2	v_{5}	2	v_{8}	6	v_{4}	7	v_{2}	7	v_{6}	9	v_{1}

Multi-set Sorting Problem

Today we will learn a simple variant of counting sort based on linked lists. The new algorithm also achieves the time complexity $O(n+U)$.

Counting Sort (Linked List Ver.)

\perp : This means a null pointer

Compute B

Counting Sort (Linked List Ver.)

How do we produce the sorted array A^{\prime} ?
Scan array B. For each cell pointing to a non-empty linked list, enumerate all the pairs therein.

Overall time complexity: $O(n+U)$

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic array guarantees O(1) insertion cost only after amortization.

However, a dynamic array provides constant-time access to any element, which a linked list cannot achieve.

Dynamic Array vs Linked List

Question:
Design a data structure of $O(n)$ space to store a set S of n integers to satisfy the following requirements:

- An integer can be inserted in $O(1)$ time.
- We can enumerate all integers in $O(n)$ time.

Answer: Linked list.

Dynamic Array vs Linked List

Question:
Design a data structure of $O(n)$ space to store a set S of n integers to satisfy the following requirements:

- An integer can be inserted in $O(1)$ amortized time.
- We can enumerate all integers in $O(n)$ time.
- For each $i \in[1, n]$, access i-th inserted integer in O (1) time.
Answer: Dynamic array

Space-Update Tradeoff of the Dynamic Array

In the lecture, we expand the array from size n to $2 n$ when it is full.

What if we expand the array size to $\lceil 1.5 n\rceil$?

Space-Update Tradeoff of the Dynamic Array

- Initially, size 2 (define $s_{1}=2$)
- $1^{\text {st }}$ expansion: size from s_{1} to $s_{2}=\left\lceil 1.5 s_{1}\right\rceil=3$.
- $2^{\text {nd }}$ expansion: from s_{2} to $s_{3}=\left\lceil 1.5 s_{2}\right\rceil=5$.
- i-th expansion: from s_{i} to $s_{i+1}=\left\lceil 1.5 s_{i}\right\rceil$.

We can prove: $s_{i} \leq\left(\frac{8}{3}\right) 1.5^{i}-2=O\left(1.5^{i}\right)$ and $s_{i} \geq 1.5^{i}$.

Space-Update Tradeoff of the Dynamic Array

- The total cost of n insertions is bounded by:

$$
\left(\sum_{i=1}^{n} O(1)\right)+\sum_{i=1}^{n} O\left(1.5^{i+1}\right)=O\left(n+1.5^{h+1}\right)
$$

where h is the number of expansions.

It must hold that $n>s_{h} \geq 1.5^{h}$ (the h-th expansion happened because the array of size s_{h} was full).

Hence, the total cost is $O(n)$.

Space-Update Tradeoff of the Dynamic Array

- Consider what happens in general. When the array is full, expand its size from n to αn, for some constant $1<\alpha \leq 2$.

Space-Update Tradeoff of the Dynamic Array

- Initially, size 2 (define $s_{1}=2$)
- $1^{\text {st }}$ expansion: size from s_{1} to $s_{2}=\left\lceil\alpha s_{1}\right\rceil$.
- $2^{\text {nd }}$ expansion: from s_{2} to $s_{3}=\left\lceil\alpha s_{2}\right\rceil$.
- i-th expansion: from s_{i} to $s_{i+1}=\left\lceil\alpha s_{i}\right\rceil$..

We can prove: $s_{i}=O\left(\frac{\alpha^{i}}{\alpha-1}\right)$ and $s_{i} \geq \alpha^{i}$.

Space-Update Tradeoff of the Dynamic Array

The total cost of n insertions is bounded by:

$$
\left(\sum_{i=1}^{n} O(1)\right)+\sum_{i=1}^{h} O\left(\frac{\alpha^{i+1}}{\alpha-1}\right)=O\left(n+\frac{\alpha^{h+2}}{(\alpha-1)^{2}}\right)
$$

where h is the number of expansions.

It must hold that $n>s_{h} \geq \alpha^{h}$ (the h-th expansion happened because the array of size s_{h} was full).

Hence, the total cost is $O\left(n+\frac{\alpha^{2}}{(\alpha-1)^{2}} n\right)$, namely, amortized cost $=O\left(1+\frac{\alpha^{2}}{(\alpha-1)^{2}}\right)$.

Space-Update Tradeoff of the Dynamic Array

Amortized cost $=O\left(1+\frac{\alpha^{2}}{(\alpha-1)^{2}}\right)$.

When α decreases, the space consumption goes down, but the insertion cost goes up.

