CSCI 2100 Tutorial 6

WU Hao

Outline

- Counting sort again a linked list version
- Dynamic array vs linked list
- Dynamic array: space and update tradeoff

Multi-set Sorting Problem (Review)

- Problem input:
 - An array containing *n* key-value pairs, where each key is an integer from [1, U].

E.g.: (93, 1155123456)

- Goal:
 - An array storing all pairs in nondescending order of key.

Multi-set Sorting Problem

- Input: {{9, v1}, {7, v2}, {2, v₃}, {6, v₄}, {2, v₅}, {7, v₆}, {1, v₇}, {2, v₈}}
- Initially we will have the following array

• Rearrange the elements so that their keys are sorted:

Sorted Array

1
$$v_7$$
 2 v_3 2 v_5 2 v_8 6 v_4 7 v_2 7 v_6 9 v_1

Multi-set Sorting Problem

Today we will learn a simple variant of counting sort based on linked lists. The new algorithm also achieves the time complexity O(n + U).

 \perp : This means a null pointer

Compute *B*

How do we produce the sorted array A'?

Scan array *B*. For each cell pointing to a non-empty linked list, enumerate all the pairs therein.

Overall time complexity: O(n + U)

Dynamic Array vs Linked List

A linked list ensures O(1) insertion cost. A dynamic array guarantees O(1) insertion cost only after amortization.

However, a dynamic array provides constant-time access to any element, which a linked list cannot achieve.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set **S** of *n* integers to satisfy the following requirements:

- An integer can be inserted in O(1) time.
- We can enumerate all integers in O(n) time.

Answer: Linked list.

Dynamic Array vs Linked List

Question:

Design a data structure of O(n) space to store a set **S** of *n* integers to satisfy the following requirements:

- An integer can be inserted in O(1) amortized time.
- We can enumerate all integers in O(n) time.
- For each *i* ∈ [1, *n*], access *i*-th inserted integer in O(1) time.

Answer: Dynamic array

In the lecture, we expand the array from size *n* to 2*n* when it is full.

What if we expand the array size to [1.5n]?

• Initially, size 2 (define $s_1 = 2$)

...

- 1st expansion: size from s_1 to $s_2 = \lceil 1.5s_1 \rceil = 3$.
- 2^{nd} expansion: from s_2 to $s_3 = [1.5s_2] = 5$.
- *i*-th expansion: from s_i to $s_{i+1} = \lceil 1.5s_i \rceil$.

We can prove: $s_i \le {\binom{8}{3}} 1.5^i - 2 = O(1.5^i)$ and $s_i \ge 1.5^i$.

• The total cost of *n* insertions is bounded by:

$$\left(\sum_{i=1}^{n} O(1)\right) + \sum_{i=1}^{h} O(1.5^{i+1}) = O(n+1.5^{h+1})$$

where *h* is the number of expansions.

It must hold that $n > s_h \ge 1.5^h$ (the *h*-th expansion happened because the array of size s_h was full).

Hence, the total cost is O(n).

• Consider what happens in general. When the array is full, expand its size from *n* to αn , for some constant $1 < \alpha \leq 2$.

• Initially, size 2 (define $s_1 = 2$)

...

- 1st expansion: size from s_1 to $s_2 = [\alpha s_1]$.
- 2nd expansion: from s_2 to $s_3 = \lceil \alpha s_2 \rceil$.
- *i*-th expansion: from s_i to $s_{i+1} = [\alpha s_i]$..

We can prove: $s_i = O(\frac{\alpha^i}{\alpha - 1})$ and $s_i \ge \alpha^i$.

The total cost of *n* insertions is bounded by:

$$\left(\sum_{i=1}^{n} O(1)\right) + \sum_{i=1}^{h} O(\frac{\alpha^{i+1}}{\alpha - 1}) = O\left(n + \frac{\alpha^{h+2}}{(\alpha - 1)^2}\right)$$

where *h* is the number of expansions.

It must hold that $n > s_h \ge \alpha^h$ (the *h*-th expansion happened because the array of size s_h was full).

Hence, the total cost is
$$O\left(n + \frac{\alpha^2}{(\alpha-1)^2}n\right)$$
, namely, amortized $\cos t = O\left(1 + \frac{\alpha^2}{(\alpha-1)^2}\right)$.

Amortized cost =
$$O\left(1 + \frac{\alpha^2}{(\alpha - 1)^2}\right)$$
.

When α decreases, the space consumption goes down, but the insertion cost goes up.