More on Merge Sort and Binary Search

CSCI2100 Tutorial 3

Adapted from the slides of the previous offerings of the course

Outline

- Review recursion principle
- Review merge sort and its variant
- A variant of binary search
- Closest pair problem

Review – Recursion Principle

- When dealing with a subproblem (same problem but with a smaller input), consider it solved.
- 1. We consider that the subproblem has already been solved.
- 2. We can directly use the output of the subproblem in the rest algorithm design.

Review – Merge Sort

- Identify the subproblems:
 - Sort the first half of the array S.
 - Sort the second half of S.

• Merge 2 sorted arrays into a single sorted array

- Set *i*, *j* to 1
- Compare 17 and 26
- 17 is smaller
- Place 17 into the new array and increase *i* by 1

- Compare 28 and 26
- 26 is smaller
- Place 26 into the new array and increase *j* by 1

- Compare 28 and 41
- 28 is smaller
- Place 28 into the new array and increase *i* by 1

- Continue the above process until we have placed all elements into the new array
- Single pass over all the input elements
- Time complexity: O(n)

Review - Merge Sort Time Complexity

- Let f(n) be the worst case time
- $f(n) \le 2f\left(\left\lceil \frac{n}{2} \right\rceil\right) + O(n)$
- By Master theorem we can get $f(n) = O(n \log n)$
- Note that it suffices to analyze only one level of the algorithm due to recursion.

Exercise: Modified Merge Sort

- Regular Exercise 3 Problem 6
- A variant of merge sort
 - If n = 1 then return immediately
 - Otherwise set $k = \lceil n/3 \rceil$
 - Recursively sort A[1 ... k] and A[k + 1 ... n], respectively
 - Merge $A[1 \dots k]$ and $A[k + 1 \dots n]$ into one sorted array
- Prove the time complexity is $O(n \log n)$

Solution

- Let f(n) be the worst case time
- f(1) = O(1)
- $f(n) \le f\left(\left\lceil \frac{n}{3} \right\rceil\right) + f\left(\left\lceil \frac{2n}{3} \right\rceil\right) + O(n)$
- Want to prove $f(n) = O(n \log n)$
- This can be done using the substitution method see the course website for solution (reg ex list 3).

A Variant of Binary Search

• Instead of comparing the target value with the middle element, we compare the target with the $\left[\frac{n}{3}\right]$ th element each time.

Time Complexity

- In the worst case, after each comparison, twothirds of the active elements are left.
- Solution
 - T(1) = O(1)
 - $T(n) \leq T\left(\left\lceil \frac{2n}{3} \right\rceil\right) + O(1)$
 - Solving the recurrence gives $T(n) = O(\log n)$.

Time Complexity

- What if we compare the target with the $\left|\frac{n}{300}\right|$ -th element?
- The time complexity is also $O(\log n)!$
 - Try verifying this by yourself.
- In general, if the comparison is made to the $\left[\frac{n}{k}\right]$ -th element for some constant k > 1, the time complexity is still $O(\log n)$.

A Bonus Problem: Closest Pair

- Problem input:
 - Two unsorted sequences A and B with m and n integers
 - *n* < *m*
- Goal: Find a pair (x, y), x from A and y from B, with the minimum |x y|.

A Bonus Problem: Closest Pair

- This problem can be solved in $O(m \log n)$ time.
 - Sort the shorter sequence.
 - Then, use elements of the longer sequence to perform binary searches.
- Note: O(m log n) is better than O(m log m) when n << m.

