
More on Merge Sort and 
Binary Search

CSCI2100 Tutorial 3

Adapted from the slides of the previous offerings of the course

1 of 17



Outline

• Review recursion principle
• Review merge sort and its variant
• A variant of binary search 
• Closest pair problem

2 of 17



Review – Recursion Principle

• When dealing with a subproblem (same problem 
but with a smaller input), consider it solved.

1. We consider that the subproblem has already 
been solved.

2. We can directly use the output of the 
subproblem in the rest algorithm design.

3 of 17



Review – Merge Sort

4 of 17

28 38 17 41 88 26

28 38 17 88 2641

• Identify the subproblems:
• Sort the first half of the array S.
• Sort the second half of S.

The original array S:

17 28 38 26 41 88

Subproblems:

Output:



Review - Merge Operation

• Merge 2 sorted arrays into a single sorted array

17 28 38 26 41 88

5 of 17



Review - Merge Operation

• Set to 1
• Compare 17 and 26
• 17 is smaller
• Place 17 into the new array and increase i by 1

17 28 38 26 41 88

17

6 of 17



Review - Merge Operation 

• Compare 28 and 26
• 26 is smaller
• Place 26 into the new array and increase j by 1

17 28 38 26 41 88

17 26

7 of 17



Review - Merge Operation

• Compare 28 and 41
• 28 is smaller
• Place 28 into the new array and increase i by 1

17 28 38 26 41 88

17 26 28

8 of 17



Review - Merge Operation

• Continue the above process until we have placed all 
elements into the new array

• Single pass over all the input elements
• Time complexity: 

17 28 38 26 41 88

17 26 28 38 41 88

9 of 17



Review - Merge Sort Time Complexity

• Let be the worst case time

•

• By Master theorem we can get 

• Note that it suffices to analyze only one level of the 
algorithm due to recursion. 

10 of 17



Exercise: Modified Merge Sort

• Regular Exercise 3 Problem 6
• A variant of merge sort

• If then return immediately
• Otherwise set 
• Recursively sort and , respectively
• Merge and into one sorted array

• Prove the time complexity is 

11 of 17



Solution

• Let be the worst case time
•

•

• Want to prove 
• This can be done using the substitution method –

see the course website for solution (reg ex list 3). 

12 of 17



A Variant of Binary Search

• Instead of comparing the target value with the 
middle element, we compare the target with the 

th element each time.

13 of 17

2 3 5 8 13 21 34 55



Time Complexity

•
elements are left.

•
•

•

• Solving the recurrence gives .

14 of 17



Time Complexity

• What if we compare the target with the -th 
element?

• The time complexity is also !
• Try verifying this by yourself.

• In general, if the comparison is made to the -th 
element for some constant k > 1, the time 
complexity is still .

15 of 17



A Bonus Problem: Closest Pair

• Problem input:
• Two unsorted sequences A and B with m and n integers
• n < m

• Goal: Find a pair , x from A and y from B, with 
the minimum .

16 of 17

1 20 9 23 2 20

11 8 7 12 13

Sequence A

Sequence B



A Bonus Problem: Closest Pair

17 of 17

1 20 9 23 2 20

11 8 7 12 13

Sequence A

Sequence B

• This problem can be solved in time.
• Sort the shorter sequence.
• Then, use elements of the longer sequence to perform 

binary searches.

• Note: is better than when 
n << m.


